3.1. Green function for the ball in dimension 2 Show that the Green function for the 2-dimensional ball $B_{r}(0) \subset \mathbb{R}^{2}$ is given by

$$
G_{\xi}(x)=\frac{1}{2 \pi}\left(\log |\xi-x|-\log \left|\frac{r \xi}{|\xi|}-\frac{|\xi| x}{r}\right|\right)
$$

for $\xi \in B_{r}(0)$. From this, prove that the formula for the Poisson kernel $P(\xi, x)$ coincides with the formula for $n>2$.

Hint: Follow the proof given for the n-dimensional case, $n>2$.
3.2. Poisson formula in two-dimensional polar coordinates Assume $f: \mathbb{R} \rightarrow$ \mathbb{R} is a C^{2} periodic function of period 2π with Fourier series

$$
f(\theta)=\sum_{n=0}^{\infty}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right) .
$$

Prove that $u: \overline{B_{r}(0)} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ given in polar coordinates by

$$
u(r, \theta)=\sum_{n=0}^{\infty}\left[\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right) r^{n}\right]
$$

is harmonic on $B_{1}(0)$, is in $C^{0}\left(\overline{B_{1}(0)}\right)$ and that $u(1, \theta)=f(\theta)$.
3.3. Green function for the half space. Fix $n \geq 2$. Consider the domain

$$
\Omega:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\} .
$$

(a) Derive the following Poisson formula for $\xi \in \Omega$

$$
\begin{equation*}
u(\xi)=\frac{2 \xi_{n}}{\omega_{n}} \int_{\partial \Omega} \frac{f(y)}{|\xi-y|^{n}} \mathrm{~d} y \tag{1}
\end{equation*}
$$

where $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ is a solution of

$$
\begin{cases}\Delta u(x)=0 & \text { for } x \in \Omega \tag{2}\\ \left.u\right|_{\partial \Omega}=f & \text { on } \partial \Omega\end{cases}
$$

and $f \in C^{0}(\partial \Omega)$.
(b) Show that for $f \in L^{\infty}(\partial \Omega) \cap C^{0}(\partial \Omega)$, (1) defines a solution in $C^{2}(\Omega) \cap L^{\infty}(\Omega)$ of problem (2).

Hint: For (a), use $\xi^{*}=\left(\xi_{1}, \ldots, \xi_{n-1},-\xi_{n}\right)$ as reflected point to compute the Green function. For (b), establish $\int_{\partial \Omega} P_{\xi}(y) \mathrm{d} y=1$, by using (1).
3.4. Harnack's inequality For $\Omega=B_{r}(0) \subset \mathbb{R}^{n}$, let $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ be ≥ 0 and harmonic on Ω. Prove that for $\xi \in \Omega$, one has

$$
\frac{r^{n-2}(r-|\xi|)}{(r+|\xi|)^{n-1}} u(0) \leq u(\xi) \leq \frac{r^{n-2}(r+|\xi|)}{(r-|\xi|)^{n-1}} u(0) .
$$

Hint: Use Poisson's formula.
3.5. Barrier postulate for some special domains Let $\Omega \subset \mathbb{R}^{n}$ be an open set having the property: for every $\zeta \in \partial \Omega$, there is a ball $B_{r}(\xi) \in \mathbb{R}^{n}$ such that

$$
\bar{\Omega} \cap \overline{B_{r}(\xi)}=\{\zeta\} .
$$

Show that Ω fulfils the barrier postulate i.e. for every $\zeta \in \partial \Omega$ there exists a subharmonic function $Q_{\zeta} \in C^{0}(\bar{\Omega})$ such that

$$
Q_{\zeta}(\zeta)=0, \quad Q_{\zeta}(x)<0 \quad \text { for } x \in \partial \Omega, x \neq \zeta
$$

Hint: Use the fundamental solution of the Laplace equation.
Please hand in your solutions for this sheet by Monday 14/03/2016.

