3.1. Green function for the ball in dimension 2 Show that the Green function for the 2-dimensional ball $B_{r}(0) \subset \mathbb{R}^{2}$ is given by

$$
G_{\xi}(x)=\frac{1}{2 \pi}\left(\log |\xi-x|-\log \left|\frac{r \xi}{|\xi|}-\frac{|\xi| x}{r}\right|\right)
$$

for $\xi \in B_{r}(0)$. From this, prove that the formula for the Poisson kernel $P(\xi, x)$ coincides with the formula for $n>2$.

Hint: Follow the proof given for the n-dimensional case, $n>2$.
Solution: We can employ the same strategy as in the case $n \geq 3$. Namely, look at $\xi^{*}=\frac{r^{2} \xi}{|\xi|^{2}}$, and verify that for $x \in \partial B_{r}(0)$, we have

$$
\frac{|\xi|}{r}\left|x-\xi^{*}\right|=|x-\xi| .
$$

Notice, that $\xi^{*} \notin B_{r}(0)$, hence $\left|x-\xi^{*}\right| \neq 0$ for all $x \in B_{r}(0)$. Hence, we can write down the Green function for $B_{r}(0)$ as

$$
G_{\xi}(x):=\psi(|x-\xi|)-\psi\left(\frac{|\xi|}{r}\left|x-\xi^{*}\right|\right)=\frac{1}{2 \pi}\left(\log |x-\xi|-\log \left|\frac{r \xi}{|\xi|}-\frac{|\xi| x}{r}\right|\right) .
$$

This is indeed the Green function, as it vanishes on $\partial B_{r}(0)$ and as G_{ξ} is the sum of the fundamental solution with a smooth harmonic function.

To derive the Poisson kernel, we have to derive G_{ξ} in the normal direction along the boundary $\partial B_{r}(0)$. We have for $x \in \partial B_{r}(0)$, that

$$
\begin{aligned}
\partial_{x_{i}} \psi(|x-\xi|) & =\frac{\left(x_{i}-\xi_{i}\right)}{2 \pi|x-\xi|^{2}} \\
\partial_{x_{i}} \psi\left(\frac{|\xi|}{r}\left|x-\xi^{*}\right|\right) & =\frac{\left(x_{i}-\xi_{i}^{*}\right)}{2 \pi\left|x-\xi^{*}\right|^{2}}=\frac{\left(\frac{|\xi|^{2}}{r^{2}} x_{i}-\xi_{i}\right)}{2 \pi|x-\xi|^{2}}
\end{aligned}
$$

Therefore, we get for $x \in \partial B_{r}(0)$,

$$
\begin{aligned}
P_{\xi}(x)=\frac{\partial}{\partial n_{x}} G_{\xi}(x)=\sum_{i=1}^{2} \frac{x_{i}}{r} \partial_{x_{i}} G_{\xi}(x) & =\sum_{i=1}^{2}\left(\frac{x_{i}\left(x_{i}-\xi_{i}\right)}{2 \pi r|x-\xi|^{2}}-\frac{x_{i}\left(\frac{|\xi|^{2}}{r^{2}} x_{i}-\xi_{i}\right)}{2 \pi r|x-\xi|^{2}}\right) \\
& =\frac{r^{2}-|\xi|^{2}}{2 \pi r\left(|x-\xi|^{2}\right)}
\end{aligned}
$$

which agrees with the formula for $n \geq 3$.
3.2. Poisson formula in two-dimensional polar coordinates Assume $f: \mathbb{R} \rightarrow$ \mathbb{R} is a C^{2} periodic function of period 2π with Fourier series

$$
f(\theta)=\sum_{n=0}^{\infty}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right) .
$$

Prove that $u: \overline{B_{r}(0)} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ given in polar coordinates by

$$
u(r, \theta)=\sum_{n=0}^{\infty}\left[\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right) r^{n}\right]
$$

is harmonic on $B_{1}(0)$, is in $C^{0}\left(\overline{B_{1}(0)}\right)$ and that $u(1, \theta)=f(\theta)$.
Solution: The Laplace equation in polar coordinates is given by

$$
\Delta=\partial_{r}^{2}+\frac{\partial_{r} u}{r}+\frac{\partial_{\theta}^{2} u}{r^{2}} .
$$

Hence, we can calculate

$$
\begin{aligned}
\Delta\left(\cos (n \theta) r^{n}\right) & =n(n-1) \cos (n \theta) r^{n-2}+\frac{n \cos (n \theta) r^{n-1}}{r}-\frac{n^{2} \cos (n \theta) r^{n}}{r^{2}} \\
& =\left[n(n-1)+n-n^{2}\right] \cos (n \theta) r^{n-2}=0
\end{aligned}
$$

and also

$$
\Delta\left(\sin (n \theta) r^{n}\right)=0 .
$$

Therefore, the partial sums $u_{N}(r, \theta)=\sum_{n=1}^{N}\left[\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right) r^{n}\right]$ is smooth and harmonic for every $N \in \mathbb{N}$. As we have that

$$
\left|a_{n}\right|=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) \mathrm{d} \theta\right| \leq \sup _{\mathbb{R}}|f|
$$

and likewise $\left|b_{n}\right| \leq \sup _{\mathbb{R}}|f|$, we get uniform convergence of u_{N} on every compact subset of $B_{1}(0)$. As the uniform limit of harmonic functions is again harmonic, we conclude that u is harmonic on $B_{1}(0)$.
As $f \in C^{2}$, we can get better estimates for the coefficients $\left|a_{n}\right|$ and $\left|b_{n}\right|$. Namely,

$$
\left|n^{2} a_{n}\right|=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) n^{2} \cos (n \theta) \mathrm{d} \theta\right|=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f^{\prime \prime}(\theta) \cos (n \theta) \mathrm{d} \theta\right| \leq \sup _{\mathbb{R}}\left|f^{\prime \prime}\right|
$$

where we used integration by parts twice in the second equality. Similarly, we have $n^{2}\left|b_{n}\right| \leq \sup _{\mathbb{R}}\left|f^{\prime \prime}\right|$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, u also converges uniformly on $\overline{B_{1}(0)}$ and in particular to f on the boundary.
3.3. Green function for the half space. Fix $n \geq 2$. Consider the domain

$$
\Omega:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\} .
$$

(a) Derive the following Poisson formula for $\xi \in \Omega$

$$
\begin{equation*}
u(\xi)=\frac{2 \xi_{n}}{\omega_{n}} \int_{\partial \Omega} \frac{f(y)}{|\xi-y|^{n}} \mathrm{~d} y \tag{1}
\end{equation*}
$$

where $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ is a solution of

$$
\begin{cases}\Delta u(x)=0 & \text { for } x \in \Omega \tag{2}\\ \left.u\right|_{\partial \Omega}=f & \text { on } \partial \Omega\end{cases}
$$

and $f \in C^{0}(\partial \Omega)$.
(b) Show that for $f \in L^{\infty}(\partial \Omega) \cap C^{0}(\partial \Omega)$, (1) defines a solution in $C^{2}(\Omega) \cap L^{\infty}(\Omega)$ of problem (2).

Hint: For (a), use $\xi^{*}=\left(\xi_{1}, \ldots, \xi_{n-1},-\xi_{n}\right)$ as reflected point to compute the Green function. For (b), establish $\int_{\partial \Omega} P_{\xi}(y) \mathrm{d} y=1$, by using (1).
Solution: For (a): We consider the point $\xi^{*}=\left(\xi_{1}, \ldots, \xi_{n-1},-\xi_{n}\right)$ and note that for $x \in \partial \Omega$,

$$
|x-\xi|=\left|x-\xi^{*}\right|
$$

and therefore we put

$$
G_{\xi}(x)=\psi(|x-\xi|)-\psi\left(\left|x-\xi^{*}\right|\right) .
$$

The function G_{ξ} is indeed the Green function for Ω as G_{ξ} vanishes on $\partial \Omega$ and it is sum of the fundamental solution with a smooth harmonic function in Ω. We have ${ }^{1}$

$$
\partial_{x_{n}} \psi(|x-\xi|)=\frac{\left(x_{n}-\xi_{n}\right)}{\omega_{n}|x-\xi|^{n}} \quad \partial_{x_{n}} \psi\left(\left|x-\xi^{*}\right|\right)=\frac{\left(x_{n}-\xi_{n}^{*}\right)}{\omega_{n}|x-\xi|^{n}}
$$

and so we get

$$
P_{\xi}(x)=\frac{\partial}{\partial n_{x}} G_{\xi}(x)=-\partial_{x_{n}} G_{\xi}(x)=\frac{2 \xi_{n}}{\omega_{n}|x-\xi|^{n}}
$$

Thus we get the formula for a harmonic function $u: \Omega \rightarrow \mathbb{R}$ having boundary values given by f,

$$
u(\xi)=-\frac{2 \xi_{n}}{\omega_{n}} \int_{\partial \Omega} \frac{f(y)}{|\xi-y|^{n}} \mathrm{~d} y
$$

[^0]For (b): First we establish boundedness for u defined by (1). We have the estimate

$$
|u(\xi)| \leq \sup _{\partial \Omega}|f| \int_{\partial \Omega} P_{\xi}(y) \mathrm{d} y=\sup _{\partial \Omega}|f| .
$$

where the last equality follows from plugging $u=f=1$ into (1) which is permitted as $u=1$ solves (2) for $f=1$. Next, we have that $P_{\xi}(x)$ is harmonic in ξ on Ω for $x \in \partial \Omega$. Hence, u is smooth and harmonic by differentiation under the sign of integration. Finally, what is left to prove, is that u is continuous up to the boundary and that $\left.u\right|_{\partial \Omega}=f$.

Therefore, fix $y_{0} \in \partial \Omega$ and for $\epsilon>0$, there is $\delta>0$ such that $\left|f(y)-f\left(y_{0}\right)\right|<\epsilon$ for all $y \in \partial \Omega$ with $\left|y-y_{0}\right|<\delta$. Then for $\xi \in \Omega$ with $\left|\xi-y_{0}\right|<\delta / 2$, we get

$$
\begin{aligned}
&\left|u(\xi)-f\left(y_{0}\right)\right|=\left|-\frac{2 \xi_{n}}{\omega_{n}} \int_{\partial \Omega} \frac{f(y)-f\left(y_{0}\right)}{|\xi-y|^{n}} \mathrm{~d} y\right| \\
& \leq \frac{2 \xi_{n}}{\omega_{n}} \int_{\partial \Omega} \frac{\left|f(y)-f\left(y_{0}\right)\right|}{|\xi-y|^{n}} \mathrm{~d} y \\
&=\frac{2 \xi_{n}}{\omega_{n}} \int_{B_{\delta}\left(y_{0}\right) \cap \partial \Omega} \frac{\left|f(y)-f\left(y_{0}\right)\right|}{|\xi-y|^{n}} \mathrm{~d} y+\frac{2 \xi_{n}}{\omega_{n}} \int_{\partial \Omega \backslash B_{\delta}\left(y_{0}\right)} \frac{\left|f(y)-f\left(y_{0}\right)\right|}{|\xi-y|^{n}} \mathrm{~d} y \\
&=I_{1}+I_{2}
\end{aligned}
$$

Now for I_{1}, we have

$$
I_{1} \leq \epsilon \int_{\partial \Omega} P_{\xi}(y) \mathrm{d} y \leq \epsilon
$$

On the other hand, for I_{2}, we get for $y \in \partial \Omega \backslash B_{\delta}\left(y_{0}\right)$

$$
\left|y-y_{0}\right| \leq|y-\xi|+\left|\xi-y_{0}\right| \leq|y-\xi|+\frac{\delta}{2} \leq|y-\xi|+\frac{1}{2}\left|y-y_{0}\right|
$$

i.e. $\frac{1}{2}\left|y-y_{0}\right| \leq|y-\xi|$. Therefore, we have

$$
\begin{aligned}
I_{2} & \leq \frac{4 \xi_{n}\|f\|_{L^{\infty}}}{\omega_{n}} \int_{\partial \Omega \backslash B_{\delta}\left(y_{0}\right)} \frac{2^{n}}{\left|y_{0}-y\right|^{n}} \mathrm{~d} y \\
& \leq \frac{2^{n+2} \xi_{n}\|f\|_{L^{\infty}}}{\omega_{n}} \int_{\partial \Omega \backslash B_{\delta}(0)} \frac{1}{|y|^{n}} \mathrm{~d} y \\
& \leq \frac{2^{n+2} \xi_{n}\|f\|_{L^{\infty}}}{\omega_{n}} \int_{\delta}^{\infty} r^{n-2} r^{-n} \int_{S^{n-2}} \mathrm{~d} \sigma \mathrm{~d} r \\
& \leq \frac{2^{n+2} \xi_{n}\|f\|_{L^{\infty}} \omega_{n-2}}{\omega_{n} \delta}
\end{aligned}
$$

Thus if we further require $\left|y_{0}-\xi\right| \leq \frac{\epsilon \omega_{n} \delta}{2^{n+2}\|f\|_{L^{\infty} \omega_{n-2}}}$, we get $I_{2} \leq \epsilon$. Hence

$$
\left|u(\xi)-f\left(y_{0}\right)\right| \leq 2 \epsilon
$$

whenever $\left|\xi-y_{0}\right| \leq \min \left(\frac{\delta}{2}, \frac{\epsilon \omega_{n} \delta}{2^{n+2}\|f\|_{L} \infty \omega_{n-2}}\right)$, which proves continuity of u at y_{0} and extending u by continuity, we have $u\left(y_{0}\right)=f\left(y_{0}\right)$ as desired.
3.4. Harnack's inequality For $\Omega=B_{r}(0) \subset \mathbb{R}^{n}$, let $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ be ≥ 0 and harmonic on Ω. Prove that for $\xi \in \Omega$, one has

$$
\frac{r^{n-2}(r-|\xi|)}{(r+|\xi|)^{n-1}} u(0) \leq u(\xi) \leq \frac{r^{n-2}(r+|\xi|)}{(r-|\xi|)^{n-1}} u(0)
$$

Hint: Use Poisson's formula.
Solution: We have that for $y \in \partial B_{r}(0)$, that for $\xi \in B_{r}(0)$

$$
r-|\xi| \leq|\xi-y| \leq r+|\xi| .
$$

Hence, we have the following bounds for the Poisson kernel

$$
\frac{r^{(n-2)}(r-|\xi|)}{(r+|\xi|)^{n-1}} \frac{1}{\omega_{n} r^{(n-1)}} \leq \frac{r^{2}-|\xi|^{2}}{r \omega_{n}|\xi-y|^{n}} \leq \frac{r^{(n-2)}(r+|\xi|)}{(r-|\xi|)^{n-1}} \frac{1}{\omega_{n} r^{(n-1)}}
$$

Thus multiplying with $u(y) \geq 0$ and integrating over $\partial B_{r}(0)$, we get

$$
\begin{aligned}
\frac{r^{(n-2)}(r-|\xi|)}{(r+|\xi|)^{n-1}} \frac{1}{\omega_{n} r^{(n-1)}} \int_{\partial B_{r}(0)} & u(y) \mathrm{d} S_{y} \leq \int_{\partial B_{r}(0)} \frac{r^{2}-|\xi|^{2}}{r \omega_{n}|\xi-y|^{n}} u(y) \mathrm{d} S_{y} \\
\leq & \frac{r^{(n-2)}(r+|\xi|)}{(r-|\xi|)^{n-1}} \frac{1}{\omega_{n} r^{(n-1)}} \int_{\partial B_{r}(0)} u(y) \mathrm{d} S_{y} .
\end{aligned}
$$

Hence, by Poisson's formula and by mean value theorem, we finally get

$$
\frac{r^{n-2}(r-|\xi|)}{(r+|\xi|)^{n-1}} u(0) \leq u(\xi) \leq \frac{r^{n-2}(r+|\xi|)}{(r-|\xi|)^{n-1}} u(0)
$$

3.5. Barrier postulate for some special domains Let $\Omega \subset \mathbb{R}^{n}$ be an open set having the property: for every $\zeta \in \partial \Omega$, there is a ball $B_{r}(\xi) \in \mathbb{R}^{n}$ such that

$$
\bar{\Omega} \cap \overline{B_{r}(\xi)}=\{\zeta\} .
$$

Show that Ω fulfils the barrier postulate i.e. for every $\zeta \in \partial \Omega$ there exists a subharmonic function $Q_{\zeta} \in C^{0}(\bar{\Omega})$ such that

$$
Q_{\zeta}(\zeta)=0, \quad Q_{\zeta}(x)<0 \quad \text { for } x \in \partial \Omega, x \neq \zeta
$$

Hint: Use the fundamental solution of the Laplace equation.
Solution: If $B_{r}(\xi)$ has the required property for $\zeta \in \partial \Omega$, then consider

$$
Q_{\zeta}(x):=K_{\xi}(x)-K_{\xi}(\zeta)
$$

where $K_{\xi}(x):=\psi(|\xi-x|)$ is the fundamental solution for the Laplace equation. We have $Q_{\zeta}(\zeta)=0$ and $Q_{\zeta}(x)<0$ for all other points x on the boundary as K_{ξ} is a decreasing function. Also $\Delta_{x} K_{\xi}(x)=0$, therefore Q_{ζ} is harmonic on Ω which implies subharmonicity.

[^0]: ${ }^{1}$ Note that we didn't have to distinguish $n=2$ and $n \geq 3$, as the expressions for the derivatives agree.

