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4.1. Removal of singularities 1 Assume u : B1(ξ) \ {ξ} ⊂ Rn → R be a harmonic
function which fulfils the condition

lim
r→0

rn−1 sup
|ξ−x|=r

(|u(x)|+ |∇u(x)|) = 0.

Then u can be extended to a harmonic function on B1(ξ).

Hint: Prove that u is a weak solution for the Laplace equation on B1(ξ) by cutting
out a small ball Br(ξ). Use Weyl’s Lemma.

Solution: Let for 0 < r < 1, denote Ωr := B1(ξ) \ Br(ξ). Then we have for all
ϕ ∈ C∞0 (B1(0)), that∣∣∣∣∫

Ωr

u∆ϕ dx
∣∣∣∣ =

∣∣∣∣∫
Ωr

(u∆ϕ− ϕ∆u) dx
∣∣∣∣

=
∣∣∣∣∣
∫
∂Br(ξ)

(ϕ∂u
∂n
− u∂ϕ

∂n
) dS

∣∣∣∣∣
≤ωnrn−1 ‖ϕ‖C1 sup

|ξ−x|=r
(|u(x)|+ |∇u(x)|) r→0+

−→ 0

Hence, for all ϕ ∈ C∞0 (B1(0))∫
Ω
u∆ϕ dx = lim

r→0+

∫
Ωr

u∆ϕ dx = 0.

This proves that u ∈ L1
loc(B1(ξ)) solves ∆u = 0 weakly, so by Weyl’s Lemma u is

smooth and harmonic on B1(ξ).

4.2. Reflection principle 2 Denote by B1(0)+ := {x ∈ B1(0) ⊂ Rn : xn > 0}.
Assume that u : B1(0)+ → R is harmonic and admits a continuous extension to
B1(0)+ with u ≡ 0 on xn = 0. Define an extension ũ of u to B1(0) by defining

u(x) = −u(x̃,−xn)

for xn < 0 and where we write x = (x̃, xn) ∈ Rn−1 ⊕ R. Prove that ũ : B1(0)→ R is
harmonic.

Hint: Prove that ũ is a weak solution for the Laplace equation on B1(0) by splitting
ϕ into even and uneven parts with respect to xn and cutting out a symmetric strip
around xn = 0. Use Lemma 2 to obtain bounds on ∇u and Weyl’s Lemma.

1Thank you Christian Beck for giving me the idea for this exercise.
2This exercise is a bit longer, but has the same general idea as 4.1.
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Solution: We note first that ũ is continuous, so in particular it is L1
loc(B1(0)). It is

also C2 on B1(0)− := {x ∈ B1(0) ⊂ Rn : xn < 0}. For xn < 0, we calculate

∂i∂iũ(x) = −∂i∂iu(x̃,−xn)
∂n∂nũ(x) = −∂n∂nu(x̃,−xn)

where i = 1, . . . , n− 1. So hence ũ is also harmonic on B1(0)−.

For ϕ ∈ C∞0 (B1(0)), split it into ϕu(x) := 1
2(ϕ(x)−ϕ(x̃,−xn)) and ϕo(x) := 1

2(ϕ(x) +
ϕ(x̃,−xn)). Then ϕu, ϕo ∈ C∞0 (B1(0)) and ϕ = ϕu + ϕo. Also ϕo (resp. ϕe) is odd
(resp. even) with respect to xn, so in particular ϕo(x̃, 0) = 0.

Denote for 0 < r < 1 by Ωr := B10 \ {x ∈ B1(0) : |xn| ≤ r}. Denote by S+
r and S−r

the upper and lower component of the boundary of Ωr. Then we have∫
Ωr

ũ∆ϕ dx =
∫

Ωr

(ũ∆ϕ+ ∆ũϕ) dx

=
∫
S+

r ∪S−
r

(ϕ∂ũ
∂n
− ũ∂ϕ

∂n
) dS

=
∫
S+

r ∪S−
r

ϕe
∂ũ

∂n
dS +

∫
S+

r ∪S−
r

ϕo
∂ũ

∂n
dS

−
∫
S+

r ∪S−
r

ũ
∂ϕ

∂n
dS

=I1 + I2 + I3

We first note that I1 = 0. Indeed, we have that ∂nũ is an even function with respect
to xn, and so ϕe∂nũ is an even function with respect to xn. However the outward
pointing vector for S+

r is ∂n whereas the one for S−r is −∂n. Hence

I1 =
∫
S+

r ∪S−
r

ϕe
∂ũ

∂n
dS =

∫
S+

r

ϕe
∂ũ

∂n
dS −

∫
S+

r

ϕe
∂ũ

∂n
dS = 0

Along the same line of arguments, we find that I2 = 2
∫
S+

r
ϕo

∂u
∂n

dS. Now u is harmonic
on B1(0)+ and dist(∂B1(0)+, S+

r ) = r. Therefore, by Lemma 2, we get the estimate
for x ∈ S+

r∣∣∣∣∣∂u∂n(x)
∣∣∣∣∣ = |∂nu(x)| ≤ n

r
sup

|x|≤1, xn≤2r
|u|

On the other hand, as ϕo ∈ C∞0 (B1(0)), it is Lipschitz, in particular there is C1 > 0,
such that for x ∈ S+

r

|ϕo(x)− ϕo(x̃, 0)| ≤ C1r.
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Combining these two facts, we find that

|I2| ≤ 2 Area(S+
r )C1r

n

r
sup

|x|≤1, xn≤2r
|u| .

Now Area(S+
r ) ≤ Area(B1(0) ∩ {xn = 0}) = C2. Furthermore, as u ≡ 0 on B1(0) ∩

{xn = 0} and {|x| ≤ 1, xn ≤ 2r} is bounded, for every ε > 0, there is rε > 0, such
that for all 0 < r < rε, we have

sup
|x|≤1, xn≤2r

|u| < ε

2nC1C2
.

This means that for all 0 < r < rε, we have |I2| < ε. I.e. limr→0+ I2 = 0. Finally,
for I3, we use that supS+

r ∪S−
r

∣∣∣∂ϕ
∂n

∣∣∣ ≤ C3 and that supS+
r ∪S−

r
|ũ| ≤ ε

2nC1C2
whenever

0 < r < rε, so we have |I3| ≤ 2C2C3
ε

2nC1C2
≤ C4ε. So we also get limr→0+ |I3| = 0.

All in all, we have∫
B1(0)

ũ∆ϕ dx = lim
r→0+

∫
Ωr

ũ∆ϕ dx = lim
r→0+

(I1 + I2 + I3) = 0.

This proves that ũ ∈ L1
loc(B1(0)) solves ∆ũ = 0 weakly, so by Weyl’s Lemma ũ is

smooth and harmonic on B1(0).

Alternative Solution: 3 By construction, you can verify that ũ ∈ C1(B1(0)) and
ũ ∈ C2(B1(0) \ {x ∈ B1(0) : xn 6= 0}). So we can use integration by part to establish
that ũ is a weak solution to Laplace’s equation.∫

B1(0)
ũ∆ϕ dx =−

∫
B1(0)
∇ũ · ∇ϕ dx

=−
∫
B+

1 (0)
∇ũ · ∇ϕ dx−

∫
B−

1 (0)
∇ũ · ∇ϕ dx

=
∫
B1(0)+

∆ũϕ dx+
∫
S+

0

∂nũϕ dσ
∫
B1(0)−

∆ũϕ dx−
∫
S−

0

∂nũϕ dσ

=0.

where we use in the penultimate line, that the normal vector of S+
0 is −∂n and that

vector for S−0 is ∂n. In the last line, we used that ũ is harmonic on B1(0)+∪B1(0)−.

4.3. Injectivity of functions Prove that the inclusion L1
loc(Ω) ↪→ D′(Ω) is injective.

In other words, prove that any u ∈ L1
loc(Ω) with the property

∫
Ω ϕu dx = 0 for all

ϕ ∈ C∞0 (Ω) must be zero almost everywhere.
3Suggested to me by Francesco Palmurella.
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Hint: This is an exercise in measure theory, and therefore we give extensive
hints and references to the script on measure theory by Prof. Salamon. 4 Step 1:
Convince yourself, that there is a representative of u which is Borel measurable. Step
2: Prove that

∫
K u = 0 for all compact sets K ⊂ Ω by using cut-off functions and

Lebesgue dominated convergence. Step 3: Define two measures µ+(A) =
∫
A u

+ dx
and µ−(A) =

∫
A u
− dx where u+ = max (u, 0) and u− = −min (f, 0). Check that

these are Borel measures by using Theorem 1.40. Step 4: Use 3.18, to get µ+ and
µ− are inner regular. Step 5: Prove that µ+ and µ− are zero, by decomposing Borel
sets A into A+ and A− where u ≥ 0 and u ≤ 0 and using Step 4 together with Step
2. Step 6: Use Lemma 1.49 to conclude.

Solution: Step 1: Let f be a representative of the u ∈ L1
loc(Ω). Then we can

approximate from below both f+ and f− by Lebesgue measurable step functions
ϕk. Now, we can modify each step function ϕk on a set of measure zero to get a
Borel measurable step function ϕ̃k such that ϕ̃k ≤ ϕ̃k+1, due to the fact that for any
Lebesgue measurable set there is some Borel set such that their symmetric difference
is a set of measure. Hence f̃ := limk→∞ ϕ̃k is Borel measurable and differs from f on
a set of measure zero, so hence it also represents u.

Step 2: Fix a compact set K and take a sequence Uk of open sets for k ∈ N such
that K ⊂ Uk+1 ⊂ Uk ⊂ Ω and such that dist(∂Uk, K) ≤ 1

k
. Then take a cut off

function ϕk ∈ C∞0 (Ω) such that ϕk ≡ 1 on K, suppϕk ⊂ Uk and imϕk ⊂ [0, 1]. As U1
is bounded, f1U1

is integrable. Thus |fϕk| ≤ f1U1
and so by Lebesgue Dominated

convergence theorem, we have∫
K
u dx =

∫
Ω
u1K dx = lim

k→∞

∫
Ω
uϕk dx = 0

where the last equality follows by assumption.

Step 3: By theorem 1.40, µ+(A) :=
∫
A u

+ dx for A Borel is a Borel measure, because
u+ is a positive, Borel measurable function. The same goes for µ−.

Step 4: By theorem 3.18, µ+ and µ− are inner regular, because every open set in Rn

is σ compact.

Step 5: Define for a Borel measurable set A, the sets A+ := {x ∈ A : u(x) ≥ 0} and
A− := {x ∈ A : u(x) < 0} are both Borel measurable. Then A = A+ q A−, and we
have

µ+(A) = µ+(A+) = sup
K⊂A+,K compact

µ+(K) = sup
K⊂A+,K compact

∫
K
u dx = 0

4 This can be found at https://people.math.ethz.ch/~salamon/PREPRINTS/measure.pdf.
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where the first equality uses u+ ≡ 0 on A−, the second equality uses inner regularity,
the third equality uses u = u+ on A+ and the last one uses Step 2. The same kind of
arguments yield µ−(A) = 0. Hence both Borel measures are zero.

Step 6: We have by Step 5∫
Ω
|u| dx = µ+(Ω) + µ−(Ω) = 0.

So by Lemma 1.49, we have that u = 0 almost everywhere.

Alternate solution: 5 Fix K ⊂ Ω compact and define for x ∈ Rn

αK(x) =


u(x)
|u(x)| if u(x) 6= 0, x ∈ K

0 else

Notice that |αK(x)| ≤ 1 for all x ∈ Rn. You can now apply a mollifier to it, i.e.

αεk := αk ∗ ρε ∈ C∞(Rn)

and for ε > 0 sufficiently small, we have suppαεK ⊂ Ω. Furthermore, we have that
αεK → αK almost everywhere. Furthermore, we have

|αεK(x)u(x)| ≤ |αεK(x)| |u(x)| ≤ |u(x)| ,

because |αεK(x)| ≤
∫
Rn ρε(y) |αK(x− y)| dy ≤

∫
Rn ρε(y) dy = 1. Therefore, we may

apply the dominated convergence theorem to αεK(x)u(x) which converges point-wise
almost everywhere to |u(x)|1K . Therefore, by assumption, we have

0 = lim
ε→0

∫
Ω
αεKu dx =

∫
Ω

lim
ε→0

αεK dx =
∫
K
|u| dx.

Thus, we have u = 0 almost everywhere in K. As K was arbitrary and Ω is σ compact,
we conclude that u = 0 almost everywhere on Ω.

4.4. Equivalent norms Let u ∈ W k,p(Rn), which means that u has weak derivatives
∂αu ∈ Lp(Rn) for every multi-index α ∈ (N ∪ {0})n with |α| ≤ k. Prove that the
norms

∑
|α|≤k
‖∂αu‖Lp(Rn) and

 ∑
|α|≤k

∫
Rn
|∂αu|p dx

 1
p

5Suggested to me by Francesco Palmurella.
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are equivalent.

Solution: We define two norms ‖·‖1 and ‖·‖2 on RN , where N = #{α : |α| ≤ k}.
Namely,

‖x‖1 =
∑
|α|≤k
|xα| and ‖x‖2 =

 ∑
|α|≤k
|xα|p

 1
p

for all x ∈ RN . As all the norms on RN are equivalent, we have that there is a
constant C ≥ 1 such that

C−1 ‖x‖1 ≤ ‖x‖2 ≤ C ‖x‖1

for all x ∈ RN . Hence, we get for x = (‖∂αu‖Lp(Rn))|α|≤k, the wanted equivalence of
the norms.

4.5. Reflexivity of Sobolev spaces Prove that W k,p(Rn) is reflexive for all
k ∈ N ∪ {0} and 1 < p <∞.

Hint: Recall from FA I, that the spaces Lp(Rn,RN) are reflexive for 1 < p <∞.

Solution: The spaces W k,p(Rn) can be injected into Lp(Rn,RN) for N = #{α :
|α| ≤ k}. Call this map ι. This space can be equipped with several equivalent norm,
and we choose to equip it with the norm ‖u‖Lp(Rn,RN ) = ∑N

i=1 ‖ui‖Lp(Rn). This makes
the inclusion ι isometric. Now W k,p(Rn) is complete, hence the image of the inclusion
ι is a complete subspace of a complete space, so im ι is closed. Now we know from
FA I, that any closed subspace of a reflexive space is again reflexive. Thus we deduce
from the reflexivity of Lp(Rn,RN ) the reflexivity of im ι. Hence, W k,p(Rn) is reflexive
as ι is an isometric embedding.
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