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4.1. Removal of singularities ' Assume u: B;(£) \ {{} C R” — R be a harmonic
function which fulfils the condition

lim ™! sup (Ju(z)| + [Vu(z)]) = 0.

O feal=r

Then u can be extended to a harmonic function on Bj(§).

Hint: Prove that u is a weak solution for the Laplace equation on B;(£) by cutting
out a small ball B,.(£). Use Weyl’s Lemma.

Solution: Let for 0 < r < 1, denote €, := By(§) \ B,(§). Then we have for all
¢ € C&°(B1(0)), that

‘/ﬂ ulAyp dx‘ = ’/Q (uAp — pAu) dz

ou Op
/BBr(ﬁ)(soan ~ U ds‘

n— r—0t
<wnt" Hlgllen sup (|u(e)] +[Vu(z)]) == 0

E—zx|=r

Hence, for all ¢ € C§°(B1(0))

/ ulAp dr = lim uAp dz = 0.
Q

r—0t+ JQ,

This proves that u € L} (B1(£)) solves Au = 0 weakly, so by Weyl’s Lemma u is

loc
smooth and harmonic on By (&).

4.2. Reflection principle ? Denote by B;(0)" := {z € B;(0) C R" : z,, > 0}.
Assume that w : B1(0)" — R is harmonic and admits a continuous extension to
By (0)* with v = 0 on x, = 0. Define an extension @ of u to B1(0) by defining

u(z) = —u(Z, —x,)

for z,, < 0 and where we write z = (Z,z,) € R""' @ R. Prove that @ : B;(0) — R is
harmonic.

Hint: Prove that @ is a weak solution for the Laplace equation on B;(0) by splitting
@ into even and uneven parts with respect to x,, and cutting out a symmetric strip
around z,, = 0. Use Lemma 2 to obtain bounds on Vu and Weyl’s Lemma.

!Thank you Christian Beck for giving me the idea for this exercise.
2This exercise is a bit longer, but has the same general idea as 4.1.
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Solution: We note first that @ is continuous, so in particular it is L},.(B1(0)). It is
also C? on By(0)” := {z € By(0) C R": z,, < 0}. For z,, < 0, we calculate

8181’&(I) = —&@u(j, —{L‘n)

OnOnt(2) = —0,00u(T, —2y,)

where i = 1,...,n — 1. So hence @ is also harmonic on B;(0)~.

For ¢ € C§°(B1(0)), split it into ¢, (z) = %(gp(:v) — (%, —x,)) and p,(z) := %(gp(x) +
o(Z, —x,)). Then @, v, € C3°(B1(0)) and ¢ = ¢, + v,. Also ¢, (resp. @) is odd
(resp. even) with respect to x,, so in particular ¢,(Z,0) = 0.

Denote for 0 < r < 1 by Q, := B0\ {z € B1(0) : |x,| < r}. Denote by S;" and S,
the upper and lower component of the boundary of €2,.. Then we have
/ uAyp dx :/ (tAp + Aup) dx
T QT
ou  _0yp

B sﬁus:((’p% B u%) ds
ot ot
_ 2 gs / L2 qs
SFusy it on + SFus; it on
D
— u— dS
SFus; u@n
=L+ 1+ I3

We first note that I; = 0. Indeed, we have that 0,4 is an even function with respect
to x,, and so 0,4 is an even function with respect to x,. However the outward
pointing vector for S} is 0,, whereas the one for S is —0,,. Hence

ou ou ou
I:/ 2y :/ R e P o
! S;*us,rgo n S s;*goﬁn S Sr(pﬁn 5=0

Along the same line of arguments, we find that I = 2 [g+ goo% dS. Now w is harmonic
on By (0)" and dist(0B1(0)*, S;") = r. Therefore, by Lemma 2, we get the estimate
for z € SF

ou n
s — < =
)| =@ <L s Ju

T |z|<1, z,<2r

On the other hand, as ¢, € C§°(B1(0)), it is Lipschitz, in particular there is C; > 0,
such that for x € S}

|0o(®) = 0o, 0)] < Cor
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Combining these two facts, we find that

|I] < 2Area(S,fr)C’17“ﬁ sup  |ul.

T |z|<1, z,<2r

Now Area(S;) < Area(B;(0) N {x, = 0}) = C,. Furthermore, as u = 0 on B;(0) N
{z, =0} and {|z| < 1, 2, < 2r} is bounded, for every e > 0, there is 7. > 0, such
that for all 0 < r < r., we have

€

sup ul < .
|z|<1, :(:n§27“‘ ’ 2nC Cy

This means that for all 0 < r < 7, we have |I5| < e. Le. lim, o+ I = 0. Finally,
for I3, we use that supg+ g- ’g—:‘ whenever

0 <r <re so we have |I3] < 2C,

< O3 and that supg+ g~ 0] < InCrCa

Csgnc-c; < Cae. So we also get lim, o+ |I5] = 0.

All in all, we have

/ iAo de = lim [ @Ap de = lim (I + I + I3) = 0.
B1(0) r—0+

r—0t JQ,

This proves that @ € L}, .(B1(0)) solves At = 0 weakly, so by Weyl’s Lemma 4 is
smooth and harmonic on B;(0).

Alternative Solution: 3 By construction, you can verify that @ € C*(B;(0)) and
@ € C%*(B1(0) \ {z € B1(0) : z, # 0}). So we can use integration by part to establish
that @ is a weak solution to Laplace’s equation.

/ uAp dr = — Vi -V dx
By (0) B1(0)

_— va-wdx—/ Vi -V de

By (0) By (0)

— Nig du+ [ i do [
B1(0)+ we ar St wede B1(0)

=0.

At dz — / Optip do
- S

where we use in the penultimate line, that the normal vector of S is —0, and that
vector for Sy is O,. In the last line, we used that @ is harmonic on By (0)" U By(0).

4.3. Injectivity of functions Prove that the inclusion L}, .(Q2) < D'(Q) is injective.
In other words, prove that any u € Li,.(Q) with the property [, pu dz = 0 for all
@ € C§(f2) must be zero almost everywhere.

3Suggested to me by Francesco Palmurella.
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Hint: This is an exercise in measure theory, and therefore we give extensive
hints and references to the script on measure theory by Prof. Salamon. * Step 1:
Convince yourself, that there is a representative of u which is Borel measurable. Step
2: Prove that [, u = 0 for all compact sets K C €2 by using cut-off functions and
Lebesgue dominated convergence. Step 3: Define two measures ™ (A) = [, ut dx
and u (A) = [4u” dz where u™ = max (u,0) and v~ = —min (f,0). Check that
these are Borel measures by using Theorem 1.40. Step 4: Use 3.18, to get u™ and
u~ are inner regular. Step 5: Prove that ™ and p~ are zero, by decomposing Borel
sets A into AT and A~ where u > 0 and u < 0 and using Step 4 together with Step
2. Step 6: Use Lemma 1.49 to conclude.

Solution: Step 1: Let f be a representative of the u € L}, .(2). Then we can
approximate from below both f* and f~ by Lebesgue measurable step functions
vr. Now, we can modify each step function y; on a set of measure zero to get a
Borel measurable step function ¢ such that @, < @py1, due to the fact that for any
Lebesgue measurable set there is some Borel set such that their symmetric difference
is a set of measure. Hence f = limy_, o P is Borel measurable and differs from f on
a set of measure zero, so hence it also represents w.

Step 2: Fix a compact set K and take a sequence Uy of open sets for £ € N such
that K C Uy C Up C Q and such that dist(OUy, K) < % Then take a cut off
function ¢ € C§°(2) such that ¢, = 1 on K, supp ¢ C Uy and im ¢y, C [0,1]. As U;
is bounded, flg; is integrable. Thus |fyx| < flg and so by Lebesgue Dominated

convergence theorem, we have

/udx:/uﬂde:hm/ugpkdxzo
K Q k—o0 JO

where the last equality follows by assumption.

Step 3: By theorem 1.40, u*(A) := [, u" dx for A Borel is a Borel measure, because
u™ is a positive, Borel measurable function. The same goes for p~.

Step 4: By theorem 3.18, u* and p~ are inner regular, because every open set in R”
is 0 compact.

Step 5: Define for a Borel measurable set A, the sets A™ := {x € A: u(x) > 0} and
A™ :={x € A:u(x) < 0} are both Borel measurable. Then A = AT II A, and we
have

pHA) =pt A = s )= s [ ude=0
K

KCA*,K compact KCA*,K compact

4 This can be found at https://people.math.ethz.ch/~salamon/PREPRINTS/measure. pdf.
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where the first equality uses ™ = 0 on A~, the second equality uses inner regularity,
the third equality uses u = u™ on A" and the last one uses Step 2. The same kind of
arguments yield ;= (A) = 0. Hence both Borel measures are zero.

Step 6: We have by Step 5

[l do = (2) + 57() = 0.

So by Lemma 1.49, we have that © = 0 almost everywhere.

Alternate solution: ®> Fix K C Q compact and define for x € R"

ore(z) = | Tul@)] ifu(z)#£0,z € K
0 else

Notice that |ax(x)] <1 for all x € R™. You can now apply a mollifier to it, i.e.
ag, == ay * p. € CF(R™)

and for € > 0 sufficiently small, we have supp aj C 2. Furthermore, we have that
af% — ak almost everywhere. Furthermore, we have

| (w)u(@)| < fak (@)] fu(z)] < Ju(z)],

because |a% ()] < [gn pe(V) ok (z —y)| dy < [gn pe(y) dy = 1. Therefore, we may
apply the dominated convergence theorem to o (x)u(z) which converges point-wise
almost everywhere to |u(z)| 1x. Therefore, by assumption, we have

0 = lim |, Ok dz :/Qll—{%af{ dz = /K]u\ dz.

Thus, we have u = 0 almost everywhere in K. As K was arbitrary and €2 is ¢ compact,
we conclude that u = 0 almost everywhere on €.

4.4. Equivalent norms Let u € W"?(R"), which means that u has weak derivatives
0% € LP(R™) for every multi-index o € (NU {0})" with |a| < k. Prove that the
norms

1
> 110 ull o ey and (Z /n ERNk d:r;)
jof<k 7K

lof <k

5Suggested to me by Francesco Palmurella.
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are equivalent.

Solution: We define two norms |[|-||; and [|-||, on RY, where N = #{a : |a| < k}.
Namely,

lzlly = > lval  and lzfly = (Z Ixa|”>

la| <k |ov| <k

for all z € RY. As all the norms on R¥ are equivalent, we have that there is a
constant C' > 1 such that

CH )zl < ll2ll, < Clly

for all z € RY. Hence, we get for x = ([|0%u|| Ly @ny )<k, the wanted equivalence of
the norms.

4.5. Reflexivity of Sobolev spaces Prove that W"?(R") is reflexive for all
EeNU{0}and 1 <p < 0.

Hint: Recall from FA I, that the spaces LP(R", RY) are reflexive for 1 < p < co.

Solution: The spaces WEP(R") can be injected into LP(R",RY) for N = #{« :
la| < k}. Call this map ¢. This space can be equipped with several equivalent norm,
and we choose to equip it with the norm |[ul| ;, g grvy = >N [[will o gny- This makes
the inclusion ¢ isometric. Now W*P(R") is complete, hence the image of the inclusion
¢ is a complete subspace of a complete space, so im¢ is closed. Now we know from
FA I, that any closed subspace of a reflexive space is again reflexive. Thus we deduce
from the reflexivity of LP(R™, RY) the reflexivity of im¢. Hence, W"?(R™) is reflexive
as ¢ is an isometric embedding.
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