4.1. Removal of singularities ${ }^{1}$ Assume $u: B_{1}(\xi) \backslash\{\xi\} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a harmonic function which fulfils the condition

$$
\lim _{r \rightarrow 0} r^{n-1} \sup _{|\xi-x|=r}(|u(x)|+|\nabla u(x)|)=0 .
$$

Then u can be extended to a harmonic function on $B_{1}(\xi)$.
Hint: Prove that u is a weak solution for the Laplace equation on $B_{1}(\xi)$ by cutting out a small ball $B_{r}(\xi)$. Use Weyl's Lemma.

Solution: Let for $0<r<1$, denote $\Omega_{r}:=B_{1}(\xi) \backslash B_{r}(\xi)$. Then we have for all $\varphi \in C_{0}^{\infty}\left(B_{1}(0)\right)$, that

$$
\begin{aligned}
\left|\int_{\Omega_{r}} u \Delta \varphi \mathrm{~d} x\right| & =\left|\int_{\Omega_{r}}(u \Delta \varphi-\varphi \Delta u) \mathrm{d} x\right| \\
& =\left|\int_{\partial B_{r}(\xi)}\left(\varphi \frac{\partial u}{\partial n}-u \frac{\partial \varphi}{\partial n}\right) \mathrm{d} S\right| \\
& \leq \omega_{n} r^{n-1}\|\varphi\|_{C^{1}} \sup _{|\xi-x|=r}(|u(x)|+|\nabla u(x)|) \xrightarrow{r \rightarrow 0^{+}} 0
\end{aligned}
$$

Hence, for all $\varphi \in C_{0}^{\infty}\left(B_{1}(0)\right)$

$$
\int_{\Omega} u \Delta \varphi \mathrm{~d} x=\lim _{r \rightarrow 0^{+}} \int_{\Omega_{r}} u \Delta \varphi \mathrm{~d} x=0
$$

This proves that $u \in L_{l o c}^{1}\left(B_{1}(\xi)\right)$ solves $\Delta u=0$ weakly, so by Weyl's Lemma u is smooth and harmonic on $B_{1}(\xi)$.
4.2. Reflection principle ${ }^{2}$ Denote by $B_{1}(0)^{+}:=\left\{x \in B_{1}(0) \subset \mathbb{R}^{n}: x_{n}>0\right\}$. Assume that $u: B_{1}(0)^{+} \rightarrow \mathbb{R}$ is harmonic and admits a continuous extension to $\overline{B_{1}(0)^{+}}$with $u \equiv 0$ on $x_{n}=0$. Define an extension \tilde{u} of u to $B_{1}(0)$ by defining

$$
u(x)=-u\left(\tilde{x},-x_{n}\right)
$$

for $x_{n}<0$ and where we write $x=\left(\tilde{x}, x_{n}\right) \in \mathbb{R}^{n-1} \oplus \mathbb{R}$. Prove that $\tilde{u}: B_{1}(0) \rightarrow \mathbb{R}$ is harmonic.

Hint: Prove that \tilde{u} is a weak solution for the Laplace equation on $B_{1}(0)$ by splitting φ into even and uneven parts with respect to x_{n} and cutting out a symmetric strip around $x_{n}=0$. Use Lemma 2 to obtain bounds on ∇u and Weyl's Lemma.

[^0]Solution: We note first that \tilde{u} is continuous, so in particular it is $L_{l o c}^{1}\left(B_{1}(0)\right)$. It is also C^{2} on $B_{1}(0)^{-}:=\left\{x \in B_{1}(0) \subset \mathbb{R}^{n}: x_{n}<0\right\}$. For $x_{n}<0$, we calculate

$$
\begin{aligned}
\partial_{i} \partial_{i} \tilde{u}(x) & =-\partial_{i} \partial_{i} u\left(\tilde{x},-x_{n}\right) \\
\partial_{n} \partial_{n} \tilde{u}(x) & =-\partial_{n} \partial_{n} u\left(\tilde{x},-x_{n}\right)
\end{aligned}
$$

where $i=1, \ldots, n-1$. So hence \tilde{u} is also harmonic on $B_{1}(0)^{-}$.
For $\varphi \in C_{0}^{\infty}\left(B_{1}(0)\right)$, split it into $\varphi_{u}(x):=\frac{1}{2}\left(\varphi(x)-\varphi\left(\tilde{x},-x_{n}\right)\right)$ and $\varphi_{o}(x):=\frac{1}{2}(\varphi(x)+$ $\left.\varphi\left(\tilde{x},-x_{n}\right)\right)$. Then $\varphi_{u}, \varphi_{o} \in C_{0}^{\infty}\left(B_{1}(0)\right)$ and $\varphi=\varphi_{u}+\varphi_{o}$. Also φ_{o} (resp. $\left.\varphi_{e}\right)$ is odd (resp. even) with respect to x_{n}, so in particular $\varphi_{o}(\tilde{x}, 0)=0$.

Denote for $0<r<1$ by $\Omega_{r}:=B_{1} 0 \backslash\left\{x \in B_{1}(0):\left|x_{n}\right| \leq r\right\}$. Denote by S_{r}^{+}and S_{r}^{-} the upper and lower component of the boundary of Ω_{r}. Then we have

$$
\begin{aligned}
\int_{\Omega_{r}} \tilde{u} \Delta \varphi \mathrm{~d} x= & \int_{\Omega_{r}}(\tilde{u} \Delta \varphi+\Delta \tilde{u} \varphi) \mathrm{d} x \\
= & \int_{S_{r}^{+} \cup S_{r}^{-}}\left(\varphi \frac{\partial \tilde{u}}{\partial n}-\tilde{u} \frac{\partial \varphi}{\partial n}\right) \mathrm{d} S \\
= & \int_{S_{r}^{+} \cup S_{r}^{-}} \varphi_{e} \frac{\partial \tilde{u}}{\partial n} \mathrm{~d} S+\int_{S_{r}^{+} \cup S_{r}^{-}} \varphi_{o} \frac{\partial \tilde{u}}{\partial n} \mathrm{~d} S \\
& -\int_{S_{r}^{+} \cup S_{r}^{-}} \tilde{u} \frac{\partial \varphi}{\partial n} \mathrm{~d} S \\
= & I_{1}+I_{2}+I_{3}
\end{aligned}
$$

We first note that $I_{1}=0$. Indeed, we have that $\partial_{n} \tilde{u}$ is an even function with respect to x_{n}, and so $\varphi_{e} \partial_{n} \tilde{u}$ is an even function with respect to x_{n}. However the outward pointing vector for S_{r}^{+}is ∂_{n} whereas the one for S_{r}^{-}is $-\partial_{n}$. Hence

$$
I_{1}=\int_{S_{r}^{+} \cup S_{r}^{-}} \varphi_{e} \frac{\partial \tilde{u}}{\partial n} \mathrm{~d} S=\int_{S_{r}^{+}} \varphi_{e} \frac{\partial \tilde{u}}{\partial n} \mathrm{~d} S-\int_{S_{r}^{+}} \varphi_{e} \frac{\partial \tilde{u}}{\partial n} \mathrm{~d} S=0
$$

Along the same line of arguments, we find that $I_{2}=2 \int_{S_{r}^{+}} \varphi_{o} \frac{\partial u}{\partial n} \mathrm{~d} S$. Now u is harmonic on $B_{1}(0)^{+}$and $\operatorname{dist}\left(\partial B_{1}(0)^{+}, S_{r}^{+}\right)=r$. Therefore, by Lemma 2, we get the estimate for $x \in S_{r}^{+}$

$$
\left|\frac{\partial u}{\partial n}(x)\right|=\left|\partial_{n} u(x)\right| \leq \frac{n}{r} \sup _{|x| \leq 1, x_{n} \leq 2 r}|u|
$$

On the other hand, as $\varphi_{o} \in C_{0}^{\infty}\left(B_{1}(0)\right)$, it is Lipschitz, in particular there is $C_{1}>0$, such that for $x \in S_{r}^{+}$

$$
\left|\varphi_{o}(x)-\varphi_{o}(\tilde{x}, 0)\right| \leq C_{1} r
$$

Combining these two facts, we find that

$$
\left|I_{2}\right| \leq 2 \operatorname{Area}\left(S_{r}^{+}\right) C_{1} r \frac{n}{r} \sup _{|x| \leq 1, x_{n} \leq 2 r}|u| .
$$

$\operatorname{Now} \operatorname{Area}\left(S_{r}^{+}\right) \leq \operatorname{Area}\left(B_{1}(0) \cap\left\{x_{n}=0\right\}\right)=C_{2}$. Furthermore, as $u \equiv 0$ on $B_{1}(0) \cap$ $\left\{x_{n}=0\right\}$ and $\left\{|x| \leq 1, x_{n} \leq 2 r\right\}$ is bounded, for every $\epsilon>0$, there is $r_{\epsilon}>0$, such that for all $0<r<r_{\epsilon}$, we have

$$
\sup _{|x| \leq 1, x_{n} \leq 2 r}|u|<\frac{\epsilon}{2 n C_{1} C_{2}} .
$$

This means that for all $0<r<r_{\epsilon}$, we have $\left|I_{2}\right|<\epsilon$. I.e. $\lim _{r \rightarrow 0^{+}} I_{2}=0$. Finally, for I_{3}, we use that $\sup _{S_{r}^{+} \cup S_{r}^{-}}\left|\frac{\partial \varphi}{\partial n}\right| \leq C_{3}$ and that $\sup _{S_{r}^{+} \cup S_{r}^{-}}|\tilde{u}| \leq \frac{\epsilon}{2 n C_{1} C_{2}}$ whenever $0<r<r_{\epsilon}$, so we have $\left|I_{3}\right| \leq 2 C_{2} C_{3} \frac{\epsilon}{2 n C_{1} C_{2}} \leq C_{4} \epsilon$. So we also get $\lim _{r \rightarrow 0^{+}}\left|I_{3}\right|=0$.
All in all, we have

$$
\int_{B_{1}(0)} \tilde{u} \Delta \varphi \mathrm{~d} x=\lim _{r \rightarrow 0^{+}} \int_{\Omega_{r}} \tilde{u} \Delta \varphi \mathrm{~d} x=\lim _{r \rightarrow 0^{+}}\left(I_{1}+I_{2}+I_{3}\right)=0 .
$$

This proves that $\tilde{u} \in L_{l o c}^{1}\left(B_{1}(0)\right)$ solves $\Delta \tilde{u}=0$ weakly, so by Weyl's Lemma \tilde{u} is smooth and harmonic on $B_{1}(0)$.
Alternative Solution: ${ }^{3}$ By construction, you can verify that $\tilde{u} \in C^{1}\left(B_{1}(0)\right)$ and $\tilde{u} \in C^{2}\left(B_{1}(0) \backslash\left\{x \in B_{1}(0): x_{n} \neq 0\right\}\right)$. So we can use integration by part to establish that \tilde{u} is a weak solution to Laplace's equation.

$$
\begin{aligned}
\int_{B_{1}(0)} \tilde{u} \Delta \varphi \mathrm{~d} x & =-\int_{B_{1}(0)} \nabla \tilde{u} \cdot \nabla \varphi \mathrm{~d} x \\
& =-\int_{B_{1}^{+}(0)} \nabla \tilde{u} \cdot \nabla \varphi \mathrm{~d} x-\int_{B_{1}^{-}(0)} \nabla \tilde{u} \cdot \nabla \varphi \mathrm{~d} x \\
& =\int_{B_{1}(0)^{+}} \Delta \tilde{u} \varphi \mathrm{~d} x+\int_{S_{0}^{+}} \partial_{n} \tilde{u} \varphi \mathrm{~d} \sigma \int_{B_{1}(0)^{-}} \Delta \tilde{u} \varphi \mathrm{~d} x-\int_{S_{0}^{-}} \partial_{n} \tilde{u} \varphi \mathrm{~d} \sigma \\
& =0 .
\end{aligned}
$$

where we use in the penultimate line, that the normal vector of S_{0}^{+}is $-\partial_{n}$ and that vector for S_{0}^{-}is ∂_{n}. In the last line, we used that \tilde{u} is harmonic on $B_{1}(0)^{+} \cup B_{1}(0)^{-}$.
4.3. Injectivity of functions Prove that the inclusion $L_{l o c}^{1}(\Omega) \hookrightarrow \mathcal{D}^{\prime}(\Omega)$ is injective. In other words, prove that any $u \in L_{l o c}^{1}(\Omega)$ with the property $\int_{\Omega} \varphi u \mathrm{~d} x=0$ for all $\varphi \in C_{0}^{\infty}(\Omega)$ must be zero almost everywhere.

[^1]Hint: This is an exercise in measure theory, and therefore we give extensive hints and references to the script on measure theory by Prof. Salamon. ${ }^{4}$ Step 1: Convince yourself, that there is a representative of u which is Borel measurable. Step 2: Prove that $\int_{K} u=0$ for all compact sets $K \subset \Omega$ by using cut-off functions and Lebesgue dominated convergence. Step 3: Define two measures $\mu^{+}(A)=\int_{A} u^{+} \mathrm{d} x$ and $\mu^{-}(A)=\int_{A} u^{-} \mathrm{d} x$ where $u^{+}=\max (u, 0)$ and $u^{-}=-\min (f, 0)$. Check that these are Borel measures by using Theorem 1.40. Step 4: Use 3.18, to get μ^{+}and μ^{-}are inner regular. Step 5: Prove that μ^{+}and μ^{-}are zero, by decomposing Borel sets A into A^{+}and A^{-}where $u \geq 0$ and $u \leq 0$ and using Step 4 together with Step 2. Step 6: Use Lemma 1.49 to conclude.

Solution: Step 1: Let f be a representative of the $u \in L_{l o c}^{1}(\Omega)$. Then we can approximate from below both f^{+}and f^{-}by Lebesgue measurable step functions φ_{k}. Now, we can modify each step function φ_{k} on a set of measure zero to get a Borel measurable step function $\tilde{\varphi}_{k}$ such that $\tilde{\varphi}_{k} \leq \tilde{\varphi}_{k+1}$, due to the fact that for any Lebesgue measurable set there is some Borel set such that their symmetric difference is a set of measure. Hence $\tilde{f}:=\lim _{k \rightarrow \infty} \tilde{\varphi}_{k}$ is Borel measurable and differs from f on a set of measure zero, so hence it also represents u.

Step 2: Fix a compact set K and take a sequence U_{k} of open sets for $k \in \mathbb{N}$ such that $K \subset U_{k+1} \subset U_{k} \subset \Omega$ and such that $\operatorname{dist}\left(\partial U_{k}, K\right) \leq \frac{1}{k}$. Then take a cut off function $\varphi_{k} \in C_{0}^{\infty}(\Omega)$ such that $\varphi_{k} \equiv 1$ on $K, \operatorname{supp} \varphi_{k} \subset U_{k}$ and $\operatorname{im} \varphi_{k} \subset[0,1]$. As U_{1} is bounded, $f \mathbb{1}_{\overline{U_{1}}}$ is integrable. Thus $\left|f \varphi_{k}\right| \leq f \mathbb{1}_{\overline{U_{1}}}$ and so by Lebesgue Dominated convergence theorem, we have

$$
\int_{K} u \mathrm{~d} x=\int_{\Omega} u \mathbb{1}_{K} \mathrm{~d} x=\lim _{k \rightarrow \infty} \int_{\Omega} u \varphi_{k} \mathrm{~d} x=0
$$

where the last equality follows by assumption.
Step 3: By theorem 1.40, $\mu^{+}(A):=\int_{A} u^{+} \mathrm{d} x$ for A Borel is a Borel measure, because u^{+}is a positive, Borel measurable function. The same goes for μ^{-}.

Step 4: By theorem 3.18, μ^{+}and μ^{-}are inner regular, because every open set in \mathbb{R}^{n} is σ compact.

Step 5: Define for a Borel measurable set A, the sets $A^{+}:=\{x \in A: u(x) \geq 0\}$ and $A^{-}:=\{x \in A: u(x)<0\}$ are both Borel measurable. Then $A=A^{+} \amalg A^{-}$, and we have

$$
\mu^{+}(A)=\mu^{+}\left(A^{+}\right)=\sup _{K \subset A^{+}, K \text { compact }} \mu^{+}(K)=\sup _{K \subset A^{+}, K \text { compact }} \int_{K} u \mathrm{~d} x=0
$$

[^2]where the first equality uses $u^{+} \equiv 0$ on A^{-}, the second equality uses inner regularity, the third equality uses $u=u^{+}$on A^{+}and the last one uses Step 2 . The same kind of arguments yield $\mu^{-}(A)=0$. Hence both Borel measures are zero.

Step 6: We have by Step 5

$$
\int_{\Omega}|u| \mathrm{d} x=\mu^{+}(\Omega)+\mu^{-}(\Omega)=0 .
$$

So by Lemma 1.49, we have that $u=0$ almost everywhere.
Alternate solution: ${ }^{5}$ Fix $K \subset \Omega$ compact and define for $x \in \mathbb{R}^{n}$

$$
\alpha_{K}(x)=\left\{\begin{array}{lr}
\frac{u(x)}{|u(x)|} & \text { if } u(x) \neq 0, x \in K \\
0 & \text { else }
\end{array}\right.
$$

Notice that $\left|\alpha_{K}(x)\right| \leq 1$ for all $x \in \mathbb{R}^{n}$. You can now apply a mollifier to it, i.e.

$$
\alpha_{k}^{\epsilon}:=\alpha_{k} * \rho_{\epsilon} \in C^{\infty}\left(\mathbb{R}^{n}\right)
$$

and for $\epsilon>0$ sufficiently small, we have $\operatorname{supp} \alpha_{K}^{\epsilon} \subset \Omega$. Furthermore, we have that $\alpha_{K}^{\epsilon} \rightarrow \alpha_{K}$ almost everywhere. Furthermore, we have

$$
\left|\alpha_{K}^{\epsilon}(x) u(x)\right| \leq\left|\alpha_{K}^{\epsilon}(x)\right||u(x)| \leq|u(x)|,
$$

because $\left|\alpha_{K}^{\epsilon}(x)\right| \leq \int_{\mathbb{R}^{n}} \rho_{\epsilon}(y)\left|\alpha_{K}(x-y)\right| \mathrm{d} y \leq \int_{\mathbb{R}^{n}} \rho_{\epsilon}(y) \mathrm{d} y=1$. Therefore, we may apply the dominated convergence theorem to $\alpha_{K}^{\epsilon}(x) u(x)$ which converges point-wise almost everywhere to $|u(x)| \mathbb{1}_{K}$. Therefore, by assumption, we have

$$
0=\lim _{\epsilon \rightarrow 0} \int_{\Omega} \alpha_{K}^{\epsilon} u \mathrm{~d} x=\int_{\Omega} \lim _{\epsilon \rightarrow 0} \alpha_{K}^{\epsilon} \mathrm{d} x=\int_{K}|u| \mathrm{d} x
$$

Thus, we have $u=0$ almost everywhere in K. As K was arbitrary and Ω is σ compact, we conclude that $u=0$ almost everywhere on Ω.
4.4. Equivalent norms Let $u \in W^{k, p}\left(\mathbb{R}^{n}\right)$, which means that u has weak derivatives $\partial^{\alpha} u \in L^{p}\left(\mathbb{R}^{n}\right)$ for every multi-index $\alpha \in(\mathbb{N} \cup\{0\})^{n}$ with $|\alpha| \leq k$. Prove that the norms

$$
\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \text { and } \quad\left(\sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left|\partial^{\alpha} u\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}
$$

[^3]are equivalent.
Solution: We define two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on \mathbb{R}^{N}, where $N=\#\{\alpha:|\alpha| \leq k\}$. Namely,
$$
\|x\|_{1}=\sum_{|\alpha| \leq k}\left|x_{\alpha}\right| \quad \text { and } \quad\|x\|_{2}=\left(\sum_{|\alpha| \leq k}\left|x_{\alpha}\right|^{p}\right)^{\frac{1}{p}}
$$
for all $x \in \mathbb{R}^{N}$. As all the norms on \mathbb{R}^{N} are equivalent, we have that there is a constant $C \geq 1$ such that
$$
C^{-1}\|x\|_{1} \leq\|x\|_{2} \leq C\|x\|_{1}
$$
for all $x \in \mathbb{R}^{N}$. Hence, we get for $x=\left(\left\|\partial^{\alpha} u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\right)_{|\alpha| \leq k}$, the wanted equivalence of the norms.
4.5. Reflexivity of Sobolev spaces Prove that $W^{k, p}\left(\mathbb{R}^{n}\right)$ is reflexive for all $k \in \mathbb{N} \cup\{0\}$ and $1<p<\infty$.

Hint: Recall from FA I, that the spaces $L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{N}\right)$ are reflexive for $1<p<\infty$.
Solution: The spaces $W^{k, p}\left(\mathbb{R}^{n}\right)$ can be injected into $L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{N}\right)$ for $N=\#\{\alpha$: $|\alpha| \leq k\}$. Call this map ι. This space can be equipped with several equivalent norm, and we choose to equip it with the norm $\|u\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{N}\right)}=\sum_{i=1}^{N}\left\|u_{i}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}$. This makes the inclusion ι isometric. Now $W^{k, p}\left(\mathbb{R}^{n}\right)$ is complete, hence the image of the inclusion ι is a complete subspace of a complete space, so im ι is closed. Now we know from FA I, that any closed subspace of a reflexive space is again reflexive. Thus we deduce from the reflexivity of $L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{N}\right)$ the reflexivity of $\operatorname{im} \iota$. Hence, $W^{k, p}\left(\mathbb{R}^{n}\right)$ is reflexive as ι is an isometric embedding.

[^0]: ${ }^{1}$ Thank you Christian Beck for giving me the idea for this exercise.
 ${ }^{2}$ This exercise is a bit longer, but has the same general idea as 4.1.

[^1]: ${ }^{3}$ Suggested to me by Francesco Palmurella.

[^2]: ${ }^{4}$ This can be found at https://people.math.ethz.ch/~salamon/PREPRINTS/measure.pdf.

[^3]: ${ }^{5}$ Suggested to me by Francesco Palmurella.

