5.1. Prove that the $L_{l o c}^{1}(\mathbb{R})$ function $u: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto|x|$, has a weak derivative in $L_{l o c}^{1}(\mathbb{R})$.
5.2. Weak derivative of $K$. Let $K:=K_{0}$ be the fundamental solution of the Laplace operator, $n \geq 2$. Prove that the first strong derivative $\partial_{i} K$ of $K$, defined everywhere but the origin, is also the first weak derivative of $K$ for $1 \leq i \leq n$.
N.B. Note that this is not true for the second derivatives, as $K$ is not a weak solution for the Laplace equation, but still $\Delta K=0$ everywhere but the origin.
5.3. Let $I=(a, b) \subset \mathbb{R}$ be a possibly unbounded open interval and let $1 \leq p \leq \infty$. Show that $u \in W^{1, p}(I)$ if and only if $u$ is continuous, $u \in L^{p}(I)^{1}$ and there is $v \in L^{p}(I)$ such that

$$
u(t)-u(s)=\int_{s}^{t} v(r) \mathrm{d} r
$$

for all $t, s \in I$.
5.4. Embedding theorem for $n=1$. Let $I=(a, b)$ be a bounded, open interval in $\mathbb{R}$ and $1 \leq p \leq \infty$. Prove that $u$ is in the Hölder space $C^{0,1-\frac{1}{p}}(I)$ and that for $v \in L^{p}(I)$ the weak derivative of $u$, we have

$$
\sup _{s, t \in I, t \neq s} \frac{|u(t)-u(s)|}{|t-s|^{1-\frac{1}{p}}} \leq\|v\|_{L^{p}(I)}
$$

Deduce that the immersion $W^{1, p}(I) \rightarrow C^{0}(I)$ is compact for $p>1$ and find a counterexample to compactness for $p=1$.
5.5. Borderline case for $n=2$. The goal of this exercise is to prove that there is no continuous immersion of $W^{1,2}\left(\mathbb{R}^{2}\right)$ into $C^{0}\left(\mathbb{R}^{2}\right)$. As a counterexample, look at $u_{\epsilon}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
u_{\epsilon}(z)=\left\{\begin{array}{rr}
\frac{\log |z|}{\log \epsilon} \text { for } & \epsilon \leq|z| \leq 1 \\
1 \text { for } & |z| \leq \epsilon \\
0 \text { for } & |z| \geq 1
\end{array}\right.
$$

Prove that $u_{\epsilon} \in W^{1,2}\left(\mathbb{R}^{2}\right) \cap C^{2}\left(\mathbb{R}^{2}\right)$ and that there is no constant $C>0$ such that for all $\epsilon>0$,

$$
\begin{equation*}
\left\|u_{\epsilon}\right\|_{C^{0}\left(\mathbb{R}^{2}\right)} \leq C\left\|u_{\epsilon}\right\|_{W^{1,2}\left(\mathbb{R}^{2}\right)} \tag{1}
\end{equation*}
$$

[^0]5.6. Give a counter example to show that the immersion $W^{1,2}\left(\mathbb{R}^{n}\right) \hookrightarrow L^{2}\left(\mathbb{R}^{n}\right)$ is not compact.

Hint: For example start with $u$ having compact support and construct a sequence by displacing its support by translation.

Please hand in your solutions for this sheet by Monday 04/04/2016.


[^0]:    ${ }^{1}$ Thank you to the student who spotted this hypothesis to be missing.

