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5.1. Prove that the L1
loc(R) function u : R→ R : x 7→ |x|, has a weak derivative in

L1
loc(R).

Solution: We look at the sign function v : R→ R : x 7→ sgn(x). Then we have for
x 6= 0 that u′(x) = v(x) and for ϕ ∈ C∞0 (R), we have∫

R
u(x)ϕ′(x) dx = lim

ε→0+

∫
{|x|>ε}

u(x)ϕ′(x) dx

= lim
ε→0+

(
−
∫
{|x|>ε}

v(x)ϕ(x) dx+ u(−ε)ϕ(−ε)− u(ε)ϕ(ε)
)

= −
∫
R
v(x)ϕ(x) dx

where the second line follows from integration by part and the fact that ϕ has compact
support. This shows that v is the weak derivative of u.

5.2. Weak derivative of K. Let K := K0 be the fundamental solution of the
Laplace operator, n ≥ 2. Prove that the first strong derivative ∂iK of K, defined
everywhere but the origin, is also the first weak derivative of K for 1 ≤ i ≤ n.

N.B. Note that this is not true for the second derivatives, as K is not a weak solution
for the Laplace equation, but still ∆K = 0 everywhere but the origin.

Solution: We have already calculated in earlier exercises that

∂iK = xi
ωn|x|n

∈ L1
loc(Rn).

Therefore, for every function ϕ ∈ C∞0 (Rn), the functions 1Bε(0)\{0}ϕ∂iK are bounded
by 1B1(0) |∂iK| ∈ L1(Rn), and converge point-wise almost everywhere to 0. Therefore
by Lebesgue dominated convergence, we have

lim
ε→0+

∫
Bε(0)

ϕ∂iK dx = 0.

Similarly, we get limε→0+
∫
∂Bε(0) ϕKν

i dS = 0. Therefore, we get

∫
Rn
ϕ∂iK dx = lim

ε→0+

(∫
Rn\Bε(0)

ϕ∂iK dx+
∫
Bε(0)

ϕ∂iK dx
)

= lim
ε→0+

(
−
∫
Rn\Bε(0)

∂iϕK dx+
∫
∂Bε(0)

ϕKνi dS
)

=
∫
Rn
∂iϕK dx
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where the second line used integration by part.

5.3. Let I = (a, b) ⊂ R be a possibly unbounded open interval and let 1 ≤ p ≤ ∞.
Show that u ∈ W 1,p(I) if and only if u is continuous, u ∈ Lp(I)1 and there is v ∈ Lp(I)
such that

u(t)− u(s) =
∫ t

s
v(r) dr

for all t, s ∈ I.

Solution: Take u ∈ W 1,p(I). Let v ∈ Lp(I) be its weak derivative. For this
implication, we will repeatedly use Lebesgue’s differentiation theorems from measure
theory, which can be found for example in Theorem 7.10, 7.11 and 7.18 of Walter
Rudin, Real and Complex Analysis 2.

Fix J a bounded open subinterval of I. Fix s, t ∈ J , s < t which are Lebesgue points
for u ∈ L1(J) 3. This means that we consider almost all points s, t in J . Now consider
the Lipschitz continuous functions ϕε : I → R approximating 1[s,t] given by

ϕε(x) =



1
ε
(x− (s− ε/2)) for s− ε

2 ≤ x ≤ s+ ε

2
1 for s+ ε

2 ≤ x ≤ t− ε

2
1
ε
((t+ ε/2)− x) for t− ε

2 ≤ x ≤ t+ ε

2
0 else

for ε > 0 sufficiently small such that it is well defined and suppϕε ⊂ J . Then we have
its weak derivative ϕ̇ε = 1

ε

(
1(s− ε2 ,s+

ε
2 ) − 1(t− ε2 ,t+

ε
2 )
)
and so by differentiation theorem,

we have

lim
ε→0+

(−
∫
I
u(r)ϕ̇ε(r) dr) = u(t)− u(s)

as s, t were Lebesgue points. Moreover by dominated convergence theorem as v ∈
L1(J), we have

lim
ε→0+

∫
I
v(r)ϕε(r) dr =

∫ t

s
v(r) dr.

1Thank you to the student who spotted this hypothesis to be missing.
2ISBN 9780070542341, 3rd edition, McGraw-Hill, 1987
3This follows from Hölder’s inequality for u ∈ Lp(J) and 1 ∈ Lq(J).
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As J is compact, ϕε will be in W 1,1(J), and so can be approximated by functions
ψk ∈ C∞0 (I) with support in J in the W 1,1(I) norm. Hence by definitions, we have

−
∫
I
u(r)ϕ̇ε(r) dr = lim

k→∞
−
∫
I
u(r)ψ̇k(r) dr = lim

k→∞

∫
I
v(r)ψk(r) dr =

∫
I
v(r)ϕε(r) dr.

By uniqueness of limits and the fact that J was arbitrary, we thereby have proven
that for almost all s, t ∈ I, s < t,

u(t)− u(s) =
∫ t

s
v(r) dr

Hence up to redefining u on a set of measure zero, we have

u(t)− u(s) =
∫ t

s
v(r) dr

and so u is continuous by dominated convergence. Indeed, let t ∈ I and pick tk → t
a convergent sequence. As tk is then a bounded sequence there is J a bounded
open subinterval of I containing all tk. Now v ∈ L1(J), means that the sequence
vk := v1(min(tk,t),max(tk,t)) is dominated in L1(I) by v1J and converges point-wise to 0
and so

lim
t→∞

u(tk) = u(t) + lim
k→∞

∫
I
vk dr = u(t).

Hence, u is continuous at every point t ∈ I.

Alternate solution: 4 We can also use J a bounded open subinterval of I and
approximate u in W 1,p(J), i.e. there is uk ∈ C∞0 (J) such that uk → u and u′k → v in
Lp(J) and the convergence is also almost everywhere. As J is bounded, uk and u′k
also converges in L1(J). Therefore, we get as the fundamental theorem of calculus
holds for C∞0 (J) functions,∫ t

s
v(r) dr = lim

k→∞

∫ t

s
u′k(r) dr = lim

k→∞
(uk(t)− uk(s)) = u(t)− u(s)

for all t, s ∈ J such that uk(t)→ u(t) and uk(s)→ u(s). Hence this is true for almost
all s, t ∈ J . The rest of the conclusion still works in the same way.

For the converse, we will prove that v is the weak differential of u. Therefore, fix
ϕ ∈ C∞0 (I), J a bounded open subinterval of I containing suppϕ and t0 ∈ J . We
calculate∫

I
u(r)ϕ̇(r) dr =

∫
I

(
u(t0) +

∫ r

t0
v(t) dt

)
ϕ̇(r) dr

=
∫
I

∫ r

t0
v(t) dt ϕ̇(r) dr

= −
∫
I
v(r)ϕ(r) dr

4Suggested to me by Francesco Palmurella
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where we used the assumption on v in the first equality, ϕ̇ having compact support in
I in the second equality and the Lebesgue differentiation theorem5 is used for the last
equality. So u ∈ W 1,p(I).

5.4. Embedding theorem for n = 1. Let I = (a, b) be a bounded, open interval
in R and 1 ≤ p ≤ ∞. Prove that u is in the Hölder space C0,1− 1

p (I) and that for
v ∈ Lp(I) the weak derivative of u, we have

sup
s,t∈I,t 6=s

|u(t)− u(s)|
|t− s|1−

1
p

≤ ‖v‖Lp(I)

Deduce that the immersion W 1,p(I) → C0(I) is compact for p > 1 and find a
counterexample to compactness for p = 1.

Solution: For the first statement, uses the previous exercise to choose u continuous
and

u(t)− u(s) =
∫ t

s
v(r) dr.

Therefore, by Hölder inequality for 1
p

+ 1
q

= 1, we get

|u(t)− u(s)| ≤
∫
I
|v(r)| dr ≤

(∫ t

s
1 dr

)1/q
‖v‖Lp(I) ≤ ‖v‖Lp(I) |t− s|

1− 1
p .

which proves u ∈ C0,1− 1
p (I).

For the second statement, for p > 1, we use Arzelà-Ascoli theorem which proves that
C0,α(I)→ C0(I) is compact for α > 0.

For the second statement, for p = 1, we take I = (−1, 1) and look at

un(x) =



1 for 1
n
< x < 1

nx for − 1
n
≤ x ≤ 1

n

− 1 for − 1 < x < − 1
n

.

Then the weak derivative is u̇n = n1(− 1
n
, 1
n

). Therefore, we have ‖un‖ ≤ 2 + 1 for all
n ∈ N and un → u := −1(−1,0) +1(0,1) in L1(I). This proves that the inclusion cannot

5By 7.18, u is AC on J , so uϕ is also AC on J and therefore we have the integration by part
formula by 7.18 and 7.12.
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be compact, because a uniform convergent subsequence ukj would also converge in
L1(I) due to boundedness of I and the only L1 limit point is u /∈ C0(I).

5.5. Borderline case for n = 2. The goal of this exercise is to prove that there
is no continuous immersion of W 1,2(R2) into C0(R2). As a counterexample, look at
uε : R2 → R defined by

uε(z) =


log |z|
log ε for ε ≤ |z| ≤ 1

1 for |z| ≤ ε

0 for |z| ≥ 1

.

Prove that uε ∈ W 1,2(R2)∩C2(R2) and that there is no constant C > 0 such that for
all ε > 0,

‖uε‖C0(R2) ≤ C ‖uε‖W 1,2(R2) (1)

Solution: We calculate that

∂1uε(z) = x

|z|2 log(ε)
, ∂2uε(z) = x

|z|2 log(ε)

for ε < |z| < 1, and that ∂iu(z) = 0 for |z| < ε and |z| > 1. Hence, for ϕ ∈ C∞0 (R2),
we have∫

R2
u∂iϕ dx =

∫
|z|<ε

u∂iϕ dx+
∫
ε<|z|<1

u∂iϕ dx+
∫
|z|>1

u∂iϕ dx := I1 + I2 + I3

where

I1 =
∫
|z|<ε

∂iϕ dx =
∫
|z|=ε

ϕνidS

I2 =
∫
ε<|z|<1

u∂iϕ dx = −
∫
|z|=ε

ϕνidS −
∫
ε<|z|<1

∂iuϕ dx

I3 = 0

Hence, (as always when the function is continuous and differentiable everywhere
but on a hypersurface) u has weak gardient ∇uε(z) = 1ε<|z|<1

z
|z|2 log ε2 equal to the

strong gradient where ever defined. As 0 ≤ uε(z) ≤ 1B1(0), u ∈ L2(R2) and obviously
u ∈ C0(R2). Furthermore,∫

R2
|∇uε(z)|2 dz =

∫
ε<|z|<1

1
|z|2 log(ε)2

dz = 2π
∫ 1

ε

1
r log(ε)2 dr = 2π

|log ε|
ε→0−→ 0.
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Hence, uε ∈ W 1,2(R2) ∩ C0(R2). Also, uε|∂Br(0) = 0 for r ≥ 1, so we also have
for example uε ∈ W 1,2

0 (B2(0))6, thus by Poincaré inequality for Ω = B2(0), we get
‖uε‖L2 → 0 as well. Hence, ‖uε‖W 1,2(R2) → 0, whereas ‖uε‖C0(R2) = 1, so there can be
no C > 0 in (1).

5.6. Give a counter example to show that the immersion W 1,2(Rn) ↪→ L2(Rn) is
not compact.

Hint: For example start with u having compact support and construct a sequence
by displacing its support by translation.

Solution: Let u ∈ W 1,2(Rn) be a function with compact support and such that
‖u‖W 1,2 = 1. Then fix a vector v ∈ Rn and define the sequence uk ∈ W 1,2(Rn) by
uk(x) := u(x+ kv). Now ‖uk‖W 1,2(Rn) = 1, so if the inclusion were compact, we would
have a subsequence ukj and a function v ∈ L2(Rn) such that ukj

j→∞−→ v. But then ukj
also converges weakly to v in L2(Rn). However, we will show that uk ⇀ 0 and so
v = 0 in contradiction to ‖uk‖L2(Rn) = ‖u‖L2(Rn) > 0 due to the translation invariance
of the Lebesgue measure.

So take ϕ ∈ C∞0 (Rn) and note that the support uk and ϕ will be disjoint for k
sufficiently big. Hence

lim
k→∞

∫
Rn
ukϕ dx = 0

and so by density of C∞0 (Rn) ⊂ L2(Rn), we have the same limit for ϕ ∈ L2(Rn). All
in all, this means that uk ⇀ 0.

6It is also in W 1,2
0 (B1(0)), but this is harder to see. This falls into the theorems involving the trace

operator, which characterises W 1,2
0 (Ω) for Ω with C1 boundary.
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