6.1. Let $\Omega \subset \mathbb{R}^{n}$ be open and $u: \Omega \rightarrow \mathbb{R}$.

Prove that the following are equivalent:
(i) $u \in W_{l o c}^{1, \infty}(\Omega)$.
(ii) u is locally Lipschitz.

Hint: For (i) implies (ii) use mollifiers $\rho_{\delta}(x):=\frac{1}{\delta^{n}} \rho(x / \delta)$ with $\operatorname{supp} \rho \subset B_{1}(0)$ and estimate the Lipschitz constant for $u_{\delta}=u * \rho_{\delta}$ as $\delta \rightarrow 0$. For (ii) implies (i), consider a fixed vector $\xi \in \mathbb{R}^{n}$ and define the difference quotient

$$
u_{j}(x):=j\left[u\left(x+\frac{\xi}{j}\right)-u(x)\right]
$$

Prove that there is $u^{\xi} \in L_{l o c}^{\infty}$, such that a subsequence of u_{j} weakly converges to u^{ξ} in $L_{l o c}^{2}$. Show that

$$
\int_{\Omega} u^{\xi} \varphi=-\int_{\Omega} u \partial_{\xi} \varphi
$$

for any $\varphi \in C_{0}^{\infty}(\Omega)$ by proving a similar equality for u_{j} and taking the limit.
6.2. Let $\Omega \subset \mathbb{R}^{2}$ be defined by

$$
\begin{aligned}
& \Omega:=\Omega_{0} \cup \bigcup_{m=0}^{\infty} \Omega_{m} \\
& \Omega_{0}:=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1,0<y<\frac{1}{2}\right\} \\
& \Omega_{m}:=\left\{(x, y) \in \mathbb{R}^{2}: \frac{1}{2^{2 m+1}}<x<\frac{1}{2^{2 m}}, \frac{1}{2} \leq y<1\right\}
\end{aligned}
$$

(a) Show that the embedding $W^{1,2}(\Omega) \rightarrow L^{2}(\Omega)$ is not compact.
(b) Show that $W^{1,2}(\Omega)$ is not a subset of $L^{q}(\Omega)$ for $q>2$.
6.3. Show that $C^{\infty}(\bar{\Omega})$ is not dense in $W^{1, p}(\Omega)$ for $p \geq 1$ where:
(a) $\Omega=(-1,0) \cup(0,1)$.
(b) $\Omega:=\left\{(x, y) \in \mathbb{R}^{2}:|(x, y)|<1\right\} \backslash\left\{(x, 0) \in \mathbb{R}^{2}: 0 \leq x<1\right\}$.

Hint: For (b), prove that for $0<\epsilon \leq 1$ and for any smooth function $\varphi:[-\epsilon, \epsilon] \rightarrow \mathbb{R}$, one has

$$
\int_{-\epsilon}^{0}|\varphi(t)| \mathrm{d} t+\int_{0}^{\epsilon}|1-\varphi(t)| \mathrm{d} t+\int_{-\epsilon}^{\epsilon}\left|\varphi^{\prime}(t)\right| \mathrm{d} t \geq \epsilon
$$

Then consider a function $u \in W^{1, p}(\Omega)$ which cannot be extended to a continuous function on $B_{1}(0)$ and find a contradiction once you try to approximate it by smooth functions.
6.4. Let $\Omega \subset \mathbb{R}^{n}$ be open. Let $u_{n} \in W^{k, p}(\Omega)$ be a Cauchy sequence with $u_{n} \rightarrow u$ in $L^{p}(\Omega)$. Prove that $u \in W^{k, p}(\Omega)$ and that $u_{n} \rightarrow u$ in $W^{k, p}(\Omega)$.
6.5. Let $\Omega=\mathbb{R}^{n}, p \geq 2$ and $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in $W^{2, p}(\Omega)$.
(a) For $n=1$, prove that

$$
\int_{\mathbb{R}}\left|u^{\prime}\right|^{p} \leq C(p) \int_{\mathbb{R}}\left|u u^{\prime \prime}\right|^{\frac{p}{2}}
$$

(b) Prove that

$$
\|u\|_{W^{1, p}(\Omega)} \leq C(n, p)\|u\|_{L^{p}(\Omega)}^{1 / 2}\|u\|_{W^{2, p}(\Omega)}^{1 / 2}
$$

(c) Prove that

$$
\|u\|_{W^{1, p}(\Omega)} \leq C(n, p)\|u\|_{L^{\infty}(\Omega)}^{1 / 2}\|u\|_{W^{2, \frac{p}{2}}(\Omega)}^{1 / 2}
$$

Hint: For (a) start with a compactly supported smooth function u and consider $v:=u^{\prime}\left|u^{\prime}\right|^{p-2}$. Then use the integration by part formula for $w=u v$ and the generalised Hölder inequality.

This sheet will be discussed after the Easter break. Please hand in your solutions for this sheet by Monday 11/04/2016.

