8.1. Composition of Sobolev functions. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded, open set with C^{1} boundary and $1 \leq p<\infty$. Pick $f \in C^{1}(\mathbb{R})$ with $f^{\prime} \in L^{\infty}$. Prove that for $u \in W^{1, p}(\Omega)$, we also have $f \circ u \in W^{1, p}(\Omega)$ and

$$
\partial_{i}(f \circ u)=f^{\prime}(u) \partial_{i} u .
$$

Hint: Approximate u by smooth functions.
8.2. The absolute value of a Sobolev function. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded, open set with C^{1} boundary and $1 \leq p<\infty$. Prove that for $u \in W^{1, p}(\Omega)$, that we also have $|u| \in W^{1, p}(\Omega)$ and that

$$
\partial_{i}|u|=\operatorname{sgn}(u) \partial_{i} u .
$$

Hint: Use Exercise 8.1 with $f_{\epsilon}(x):=\sqrt{x^{2}+\epsilon^{2}}-\epsilon$.
8.3. Iterated Calderòn-Zygmund. Prove that for all $m, n \in \mathbb{N}$ and $1<p<\infty$, there is a constant $C>0$ such that

$$
\left\|\partial^{2 m} u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\left\|\Delta^{m} u\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
8.4. Schwartz space and Fourier transform. ${ }^{1}$ The goal of this exercise is to define the Schwartz space and study the Fourier transform on it. We define norms for $k \in n$ on $C^{\infty}\left(\mathbb{R}^{n}\right)$ by

$$
\|u\|_{k}:=\sup _{|\alpha| \leq k} \sup _{x \in \mathbb{R}^{n}}\left|\partial^{\alpha} u(x)\right|(1+|x|)^{k} .
$$

and define

$$
\mathcal{S}\left(\mathbb{R}^{n}\right):=\left\{u \in C^{\infty}\left(\mathbb{R}^{n}\right):\|u\|_{k}<\infty \text { for all } k \in \mathbb{N}\right\}
$$

This is a complete, topological vector space with respect to the distance function

$$
d(u, v):=\sum_{k \geq 1} 2^{-k} \frac{\|u-v\|_{k}}{1+\|u-v\|_{k}}
$$

for $u, v \in \mathcal{S}\left(\mathbb{R}^{n}\right) .{ }^{2}$

[^0](a) Prove that $C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}\left(\mathbb{R}^{n}\right) \subset \bigcap_{1 \leq p \leq \infty} L^{p}\left(\mathbb{R}^{n}\right)$. We state as a fact that these inclusions are continuous and have dense image in the respective distance functions.

Hint: Use the fact that $\frac{1}{(1+\mid x)^{m p}}$ is in $L^{1}\left(\mathbb{R}^{n}\right)$ whenever $m p>n$.
(b) Prove that for $u, v \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and for P a polynomial, we get that $P u$, $u v$ and $\partial^{\alpha} u$ are elements of $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
(c) Prove for $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ that its Fourier transform $\hat{u} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Also prove that if $\lim _{k \rightarrow \infty} d\left(u_{k}, u\right)=0$ for $u_{k}, u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, then also $\lim _{k \rightarrow \infty} d\left(\hat{u_{k}}, \hat{u}\right)=0$.
(d) Prove that the Fourier transform $\mathcal{F}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is a linear isomorphism of topological vector spaces.
Hint: Use the Fourier inverse formula, which says that $u=\tilde{\mathcal{F}}(\mathcal{F}(u))$ for $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $\tilde{\mathcal{F}}(u)(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\langle x, \xi\rangle} \hat{u}(\xi) \mathrm{d} \xi$.

8.5. A generalised Fourier transform.

(a) Prove that for $u, v \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\int_{\mathbb{R}^{n}} \hat{u} v=\int_{\mathbb{R}^{n}} u \hat{v} .
$$

By the same token prove

$$
\int_{\mathbb{R}^{n}} u \bar{v}=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \hat{u} \overline{\hat{v}} .
$$

This gives you Plancherel's identity

$$
\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}=(2 \pi)^{-n / 2}\|\hat{u}\|_{L^{2}\left(\mathbb{R}^{n}\right)} .
$$

(b) Extend $\mathcal{F}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ in a unique way to an isomorphism $\mathcal{F}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow$ $L^{2}\left(\mathbb{R}^{n}\right)$ with

$$
(2 \pi)^{-n / 2}\|\mathcal{F}(u)\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Prove that this agrees with \hat{u} for $u \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n}\right)$.
Hint: For the second statement, start with u having compact support and mollifiers to get $\hat{u}=\mathcal{F}(u)$ on every compact set, next try to deduce the general case from this special case.
(c) Introduce $\mathcal{S}\left(\mathbb{R}^{n}\right)^{\prime}$ the space of continuous linear functionals on $\mathcal{S}\left(\mathbb{R}^{n}\right)$. As $C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}\left(\mathbb{R}^{n}\right)$, this is a subset of distributions called tempered distributions. They should be thought of as the distributions you can apply Fourier transform to. Prove that

$$
T_{f}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}: u \mapsto \int_{\mathbb{R}^{n}} f u
$$

is a tempered distribution for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $1 \leq p \leq \infty$.
(d) Introduce for $T \in \mathcal{S}\left(\mathbb{R}^{n}\right)^{\prime}$, its Fourier transform $\mathcal{F}(T)$ by setting

$$
\langle\mathcal{F}(T), u\rangle:=\langle T, \hat{u}\rangle .
$$

Prove that $\mathcal{F}(T) \in \mathcal{S}\left(\mathbb{R}^{n}\right)^{\prime}$.
(e) Prove that for $f \in L^{2}\left(\mathbb{R}^{n}\right)$, we have

$$
\mathcal{F}\left(T_{f}\right)=T_{\mathcal{F}(f)} .
$$

and that for $f \in L^{1}\left(\mathbb{R}^{n}\right)$, we have

$$
\mathcal{F}\left(T_{f}\right)=T_{\hat{f}}
$$

So the Fourier transform on tempered distributions generalises both notions of Fourier transform.
(f) Prove that for $T \in \mathcal{S}\left(\mathbb{R}^{n}\right)^{\prime}$, the functions

$$
x^{\alpha} T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}: u \mapsto T\left(x^{\alpha} u\right)
$$

and

$$
\partial^{\beta} T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}: u \mapsto(-1)^{|\beta|} T\left(\partial^{\beta} u\right)
$$

are tempered distributions for all multi-indices α, β. Prove that $\mathcal{F}\left(\partial_{j} T\right)=i x_{j} \mathcal{F}(T)$ and $\mathcal{F}\left(i x_{j} T\right)=-\partial_{j} \mathcal{F} T$.
8.6. Calderòn-Zygmund inequality via multipliers. We reprove the CalderònZygmund inequality by using the Mikhlin multiplier theorem. Prove the following steps. Let $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
(a) Prove that the function $K_{j} * f$ defines a tempered distribution in the usual way. Call this distribution T_{j}.
(b) Prove that $-\sum_{i=1}^{n}\left(x_{i}^{2} \mathcal{F}\left(T_{j}\right)\right)=i \xi_{i} T_{\hat{f}}$, by using the identity $\Delta\left(K_{j} * f\right)=\partial_{j} f$.
(c) Prove that $\mathcal{F}\left(\partial_{i}\left(K_{j} * f\right)\right)=m_{i j} \hat{f}$ where $m_{i j}(\xi):=\frac{\xi_{i} \xi_{j}}{|\xi|^{2}}$.
(d) Deduce the Calderòn-Zygmund inequality from Mikhlin multiplier theorem.

Please hand in your solutions for this sheet by Monday 25/04/2016.

[^0]: ${ }^{1}$ This and the next Exercise are simply a lot of checking, don't worry ;)
 ${ }^{2}$ This is an example of a Fréchet space, a way of generalising Banach spaces.

