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8.1. Composition of Sobolev functions. Let Ω ⊂ Rn be a bounded, open set
with C1 boundary and 1 ≤ p < ∞. Pick f ∈ C1(R) with f ′ ∈ L∞. Prove that for
u ∈ W 1,p(Ω), we also have f ◦ u ∈ W 1,p(Ω) and

∂i(f ◦ u) = f ′(u)∂iu.

Hint: Approximate u by smooth functions.

Solution: Denote by c := supR |f ′|. Then |f(x)− f(y)| ≤ c |x− y|. This implies

‖f ◦ u− f ◦ v‖Lp(Ω) ≤ c ‖u− v‖Lp(Ω) .

for all u, v ∈ Lp(Ω). Therefore, if uj ∈ C∞(Ω) converges to u ∈ W 1,p(Ω) in W 1,p(Ω)
and almost everywhere, then f ◦ uj converges to f ◦ u in Lp(Ω). Next consider

‖f ′(uj)∂iuj − f ′(u)∂iu‖Lp(Ω) ≤ ‖f
′(uj)(∂iuj − ∂iu)‖Lp(Ω)+‖(f

′(u)− f ′(uj))∂iu‖Lp(Ω) .

Then as ∂iuj converges to ∂iu in Lp(Ω), we have

‖f ′(uj)(∂iuj − ∂iu)‖Lp(Ω) ≤ c ‖∂iuj − ∂iu‖Lp(Ω) → 0

as j → ∞. Furthermore, we have that f ′ is continuous, whereby f ′(uj) converges
almost everywhere to f ′(u), as uj does. In addition, (f ′(u)− f ′(uj))∂iu is bounded
above by 2c∂iu ∈ Lp(Ω), so by dominated convergence, we get

‖(f ′(u)− f ′(uj))∂iu‖Lp(Ω) → 0

as j →∞. In conclusion, we have that f ′(uj)∂iuj converges to f ′(u)∂iu in Lp(Ω).

As ∂i(f ◦ uj) = f ′(uj)∂iuj , we have that f ◦ u is a Cauchy sequence in W 1,p(Ω) which
converges in Lp(Ω) to f ◦ u and whose derivatives ∂i(f ◦ uj) converge to f ′(u)∂iu in
Lp(Ω). So by uniqueness of limit, f ◦ u ∈ W 1,p(Ω) and ∂i(f ◦ u) = f ′(u)∂iu.

8.2. The absolute value of a Sobolev function. Let Ω ⊂ Rn be a bounded,
open set with C1 boundary and 1 ≤ p <∞. Prove that for u ∈ W 1,p(Ω), that we also
have |u| ∈ W 1,p(Ω) and that

∂i |u| = sgn(u)∂iu.

Hint: Use Exercise 8.1 with fε(x) :=
√
x2 + ε2 − ε.

Solution: We have that 0 ≤ |x|−fε(x) ≤ ε for ε > 0 and x ∈ R. Also f ′ε(x) = x√
x2+ε2

converges pointwise to sgn(x) and |f ′ε(x)| ≤ 1. So hence fε ∈ C1(R) and f ′ε ∈ L∞.
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Therefore by Exercise 8.1, fε ◦ u ∈ W 1,p(Ω) and fε ◦ u→ |u| in Lp(Ω). Furthermore,
f ′ε(u)∂iu converges pointwise to sgn(u)∂iu and f ′ε(u)∂iu is bounded by ∂iu ∈ Lp(Ω).
Thus, by dominated convergence, we have

‖f ′ε(u)∂iu− sgn(u)∂iu‖Lp(Ω) → 0

for ε→ 0. Hence, by the same argument as at the end of Exercise 8.1, |u| ∈ W 1,p(Ω)
and ∂i |u| = sgn(u)∂iu.

8.3. Iterated Calderòn–Zygmund. Prove that for all m,n ∈ N and 1 < p <∞,
there is a constant C > 0 such that∥∥∥∂2mu

∥∥∥
Lp(Rn)

≤ C ‖∆mu‖Lp(Rn)

for all u ∈ C∞0 (Rn).

Solution: The case m = 1 is exactly the Calderòn–Zygmund inequality. Now
assume we already proved the inequality for m = k − 1. Then we have for the
multi-index α with |α| = 2k, that there are multi-indices β of order |β| = 2k − 2 and
γ with |γ| = 2 such that β + γ = α, and so

‖∂αu‖Lp(Rn) =
∥∥∥∂β∂γu∥∥∥

Lp(Rn)
≤
∥∥∥∂2k−2(∂γu)

∥∥∥
Lp(Rn)

≤ C
∥∥∥∆k−1(∂γu))

∥∥∥
Lp(Rn)

= C
∥∥∥∂γ(∆k−1u))

∥∥∥
Lp(Rn)

≤ C ′
∥∥∥∆∆m−1u

∥∥∥
Lp(Rn)

where we used the induction hypothesis in the first line and the Calderòn–Zygmund
inequality in the second line. By summing over all multi-indices of order 2k, we get
the desired result.

8.4. Schwartz space and Fourier transform. 1 The goal of this exercise is to
define the Schwartz space and study the Fourier transform on it. We define norms for
k ∈ n on C∞(Rn) by

‖u‖k := sup
|α|≤k

sup
x∈Rn
|∂αu(x)| (1 + |x|)k.

and define

S(Rn) := {u ∈ C∞(Rn) : ‖u‖k <∞ for all k ∈ N}.

1This and the next Exercise are simply a lot of checking, don’t worry ;)
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This is a complete, topological vector space with respect to the distance function

d(u, v) :=
∑
k≥1

2−k ‖u− v‖k
1 + ‖u− v‖k

for u, v ∈ S(Rn).2

(a) Prove that C∞0 (Rn) ⊂ S(Rn) ⊂ ⋂
1≤p≤∞ L

p(Rn). We state as a fact that these
inclusions are continuous and have dense image in the respective distance functions.

Hint: Use the fact that 1
(1+|x|)mp is in L1(Rn) whenever mp > n.

(b) Prove that for u, v ∈ S(Rn) and for P a polynomial, we get that Pu, uv and ∂αu
are elements of S(Rn).

(c) Prove for u ∈ S(Rn) that its Fourier transform û ∈ S(Rn). Also prove that if
limk→∞ d(uk, u) = 0 for uk, u ∈ S(Rn), then also limk→∞ d(ûk, û) = 0.

(d) Prove that the Fourier transform F : S(Rn)→ S(Rn) is a linear isomorphism of
topological vector spaces.

Hint: Use the Fourier inverse formula, which says that u = F̃(F(u)) for u ∈ S(Rn)
and F̃(u)(x) = 1

(2π)n

∫
Rn ei〈x,ξ〉û(ξ) dξ.

Solution:

(a) Let u ∈ C∞0 (Rn), then the function xα∂βu ∈ C∞0 (Rn), hence is in L∞(Rn). As
the sup in ‖·‖k runs over finitely many indices, this proves that ‖u‖k < ∞ for all
k ∈ N.

Now let u ∈ S(Rn), then ‖u‖L∞ ≤ ‖u‖1 <∞ and so u ∈ L∞(Rn). Furthermore, for
p <∞, we have for m ∈ N with mp > n, that∫

Rn
|u|p =

∫
Rn

(|u| (1 + |x|)m)p 1
(1 + |x|)mp ≤ ‖u‖

p
m

∫
Rn

1
(1 + |x|)mp <∞

and so u ∈ Lp(Rn).

(b) That Pu and ∂αu are in S(Rn), is not difficult to see, as Schwartz functions are
C∞ functions, whose derivatives all go to zero quicker than any polynomial. Let us
check for uv. Fix a multi-index β and k ∈ N with |β| ≤ k, then

(1 + |x|)k∂α(uv) = (1 + |x|)k
∑

β+γ=α

(
α
β

)
∂βu∂γu

and so

‖uv‖k ≤ C ‖u‖k ‖v‖k <∞.
2This is an example of a Fréchet space, a way of generalising Banach spaces.
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(c) It is a little exercise to see that the expressions ‖u‖α,β := supx∈Rn

∣∣∣xα∂βu(x)
∣∣∣ <∞

for all multi-indices α, β if and only if ‖u‖k <∞ for all k ∈ N.

We have û(ξ) =
∫
Rn e−i〈x,ξ〉u(x) dx and so for multi-indices β and α, we get

ξα∂βξ û(ξ) =
∫
Rn

(ξα∂βξ e−i〈x,ξ〉)u(x) dx =
∫
Rn

(ξα(−i)|β|xβe−i〈x,ξ〉)u(x) dx

=
∫
Rn

(i|α|∂αx e−i〈x,ξ〉)(−i)|β|xβu(x) dx

=
∫
Rn
e−i〈x,ξ〉(−i)|β|+|α|∂αxxβu(x) dx = (−i)|β|+|α| ̂(∂αxxβu(x))

where in the penultimate line, we used integration by parts, which is justified, as the
boundary term will be of the form polynomial times Schwartz function, to goes to
zero at ∞. Therefore,

sup
ξ∈Rn

∣∣∣ξα∂βξ û(ξ)
∣∣∣ ≤ ∥∥∥∂αxxβu∥∥∥L1(Rn)

<∞

where we used (a) and (b), to conclude that ∂αxxβu ∈ L1(Rn). By the same token, if
limk→∞ d(uk, u) = 0, then

sup
ξ∈Rn

∣∣∣ξα∂βξ (ûk(ξ)− û(ξ))
∣∣∣ ≤ ∥∥∥∂αxxβ(uk − u)

∥∥∥
L1(Rn)

≤ sup
x∈Rn

∣∣∣(1 + |x|)n+1∂αxx
β(uk(x)− u(x))

∣∣∣ ∥∥∥∥∥ 1
(1 + |x|)n+1

∥∥∥∥∥
L1(Rn)

→ 0

as k →∞. Hence also limk→∞ d(ûk, û) = 0.

(d) It is well defined by the previous point. We have by the Fourier inverse formula
that F(Fu)(x) = (2π)nu(−x) for u ∈ S(Rn), x ∈ Rn and so F4u = (2π)2nu for
u ∈ S(Rn). Therefore, F is bijective and linear. Again by the previous point, we also
know that F is continuous and its inverse (2π)−2n(F)3 is also continuous.

8.5. A generalised Fourier transform.

(a) Prove that for u, v ∈ S(Rn), we have∫
Rn
ûv =

∫
Rn
uv̂.

By the same token prove∫
Rn
uv̄ = (2π)−n

∫
Rn
ûv̂.

This gives you Plancherel’s identity

‖u‖L2(Rn) = (2π)−n/2 ‖û‖L2(Rn) .
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(b) Extend F : S(Rn)→ S(Rn) in a unique way to an isomorphism F : L2(Rn)→
L2(Rn) with

(2π)−n/2 ‖F(u)‖L2(Rn) = ‖u‖L2(Rn) .

Prove that this agrees with û for u ∈ L1(Rn) ∩ L2(Rn).

Hint: For the second statement, start with u having compact support and mollifiers
to get û = F(u) on every compact set, next try to deduce the general case from this
special case.

(c) Introduce S(Rn)′ the space of continuous linear functionals on S(Rn). As
C∞0 (Rn) ⊂ S(Rn), this is a subset of distributions called tempered distributions.
They should be thought of as the distributions you can apply Fourier transform to.
Prove that

Tf : S(Rn)→ C : u 7→
∫
Rn
fu

is a tempered distribution for all f ∈ Lp(Rn) and 1 ≤ p ≤ ∞.

(d) Introduce for T ∈ S(Rn)′, its Fourier transform F(T ) by setting

〈F(T ), u〉 := 〈T, û〉 .

Prove that F(T ) ∈ S(Rn)′.

(e) Prove that for f ∈ L2(Rn), we have

F(Tf ) = TF(f).

and that for f ∈ L1(Rn), we have

F(Tf ) = Tf̂ .

So the Fourier transform on tempered distributions generalises both notions of Fourier
transform.

(f) Prove that for T ∈ S(Rn)′, the functions

xαT : S(Rn)→ C : u 7→ T (xαu)

and

∂βT : S(Rn)→ C : u 7→ (−1)|β|T (∂βu)

are tempered distributions for all multi-indices α, β. Prove that F(∂jT ) = ixjF(T )
and F(ixjT ) = −∂jFT .
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Solution:

(a) We have for u, v ∈ S(Rn) that∫
Rn
û(x)v(x) dx =

∫
Rn

∫
Rn
e−i〈x,ξ〉u(ξ)v(x) dξ dx =

∫
Rn

∫
Rn
e−i〈x,ξ〉u(ξ)v(x) dx dξ

=
∫
Rn
u(ξ)v̂(ξ) dξ.

Now set v = (2π)−nŵ in the previous result, to get

(2π)−n
∫
Rn
ûŵ = (2π)−n

∫
Rn
u ˆ̂w

and we calculate

(2π)−n ˆ̂w(x) = (2π)−n
∫
Rn
e−i〈x,ξ〉ŵ(ξ) dξ = (2π)−n

∫
Rn
ei〈x,ξ〉ŵ(ξ) dξ = w(x),

which proves the wanted formula.

(b) Let uj ∈ S(Rn) be a sequence that converges to u ∈ L2(Rn) in L2. Then Fuj
is a Cauchy sequence in L2 by Plancherel. Hence, there is an element Fu ∈ L2(Rn)
such that ‖u‖L2(Rn) = (2π)−n ‖û‖L2(Rn) and that Fuj converges in L2 to Fu. Now let
vj ∈ S(Rn) be another sequence converging to u in L2. Then uj−vj converges to zero
in L2, which means that F(uj − vj) also converges to zero in L2 by Plancherel. Hence
F(u) is well defined and is an isomorphism as we may also extend the Fourier inverse
F̃ to L2 in the same way, and then directly see that this is a linear isomorphism where
linearity follows by uniqueness of limits. It is continuous, because of the Plancherel
identity.

For the prove that ˆ and F agree on L1(Rn) ∩ L2(Rn), we first consider u to have
compact support. Then for a mollifying kernel ηδ, we get that uδ := u∗ηδ ∈ C∞0 (Rn) ⊂
S(Rn) converges to u both in L1 and L2. Hence, we also have that ûδ = F(uδ)→ Fu
as δ → 0. On the other hand, we have that

‖ûδ − û‖L∞(Rn) ≤ ‖uδ − u‖L1(Rn) → 0

as δ → 0. From L∞(Rn), we get for any compact subset K ⊂ Rn that ûδ converges
to û in L2(K). Therefore, by uniqueness of limit in L2(K), we get that û = Fu in K.
As Rn is σ-compact, we have û = Fu. Now if u ∈ L1(Rn)∩L2(Rn), then for ur1Br(0),
we already know that ûr = Fur. By dominated convergence, ur converges to u both
in L1 and L2. As before for r →∞, we then have that ûrF(ur)→ Fu in L2(Rn) and
ûr → u in L∞(Rn). So the same argument with compact sets, we get that Fu = û.
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(c) These being linear continuous, it is enough to check continuity at zero for Tf .
Both being metric spaces, it is enough to check continuity at zero using sequences.
Let uj ∈ S(Rn) be a sequence with limj→∞ ‖uj‖k = 0 and see that

|Tf (uj)| =
∣∣∣∣∫

Rn
f(x)uj(x) dx

∣∣∣∣ ≤ ‖f‖Lp ‖uj‖Lq

where 1
p

+ 1
q

= 1. If q = ∞, then ‖uj‖Lq ≤ ‖uj‖1 → 0. Whereas if q < ∞, we have

the usual trick with ‖uj‖Lq ≤
∥∥∥ 1

(1+|x|)mq

∥∥∥1/q

L1(Rn)
‖uj‖m → 0 for mq > n.

(d) If ‖uj‖k → 0 for k ∈ N as j → ∞, then also ‖ûj‖k → 0 for k ∈ N as j → ∞.
Therefore, as T ∈ S(Rn)′, we get

lim
j→∞
|F(T (uj))| = lim

j→∞
|T (ûj)| = 0.

Therefore, F(T ) being linear is in S(Rn)′.

(e) Both arguments work in the same way. Let us take for example f ∈ L2(Rn).
Then approximate f by function fj ∈ C∞0 (Rn) in L2(Rn) norm. Then we have for all
u ∈ S(Rn), that

F(Tfj
)(u) =

∫
Rn
fjû =

∫
Rn
f̂ju = Tf̂j

u.

By Hölder, we have∣∣∣F(Tfj
)(u)−F(Tf )(u)

∣∣∣ ≤ ‖fj − f‖L2(Rn) ‖u‖L2(Rn) → 0

as j → ∞. On the other hand, as fj → f in L2(Rn), we also have f̂j → F(f) in
L2(Rn), so we also have∣∣∣Tf̂j

u− TF(f)u
∣∣∣ ≤ ∥∥∥f̂j −F(f)

∥∥∥
L2(Rn)

‖u‖L2(Rn) → 0

as j →∞. Hence F(Tf ) = TF(f). The only difference to L1(Rn) is that now f̂j → f̂
in L∞(Rn), but this only changes the argument very slightly.

(f) The first two checks follow immediately from the fact that for uj ∈ S(Rn) with
limj→∞ ‖uj‖k = 0 for k ∈ N, we also have

lim
j→∞
‖xαuj‖k = 0 and lim

j→∞

∥∥∥∂βuj∥∥∥
k

= 0.

The other result follows by establishing these rules for u ∈ S(Rn). Indeed, we have
for example

F(∂iu)(ξ) =
∫
Rn
e−i〈x,ξ〉(∂ei

x u)(x) dx = −
∫
Rn

(∂ei
x e
−i〈x,ξ〉)u(x) dx

=
∫
Rn
iξie

−i〈x,ξ〉u(x) dx = iξiF(u).
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Therefore,

F(ixiT )(u) = (ixiT )(û) = T (iξiû) = T (F(∂iu)) = −∂iF(T )(u).

Similarly, from F(ixiu)(ξ) = −∂iF(u), follows that F(∂jT ) = ixjF(T ).

8.6. Calderòn–Zygmund inequality via multipliers. We reprove the Calderòn–
Zygmund inequality by using the Mikhlin multiplier theorem. Prove the following
steps. Let f ∈ C∞0 (Rn).

(a) Prove that the function Kj ∗ f defines a tempered distribution in the usual way.
Call this distribution Tj.

(b) Prove that −∑n
i=1(x2

iF(Tj)) = iξiTf̂ , by using the identity ∆(Kj ∗ f) = ∂jf .

(c) Prove that F(∂i(Kj ∗ f)) = mij f̂ where mij(ξ) := ξiξj

|ξ|2 .

(d) Deduce the Calderòn–Zygmund inequality from Mikhlin multiplier theorem.

Solution:

(a) Recall Kj(x) = xj

|x|nωn
. For f ∈ C∞0 (Rn), we have that

|Kj ∗ f | (x) ≤
∫
Rn

∣∣∣∣∣ xj − yj
|x− y|n ωn

∣∣∣∣∣ |f(y)| dy ≤ C
1

(1 + |x|)n−1 .

So Kj ∗ f goes to zero as the radius goes to ∞, so Kj ∗ f ∈ L∞(Rn), which defines a
tempered distribution Tj = TKj∗f . Notice, that this estimate is not enough to prove
Kj ∗ f is L2(Rn) if n = 2.

(b) We have

∆(Tj) = T∆(Kj∗f) = T∂jf = ∂j(Tf ),

therefore by applying the Fourier transform to these tempered distributions, we get
by the rules in (f) of the previous exercise,

n∑
i=1

((ixi)2F(Tj)) = ixjF(Tf ).

More in formulae, we have for ψ ∈ S(Rn) that if we take ϕ ∈ S(Rn) such that ∆ϕ̂ = ψ̂,
or − |ξ|2 ϕ(ξ) = ψ(ξ) for ξ ∈ Rn, that∫

Rn
(Kj ∗ f)ψ̂ =

∫
Rn

(Kj ∗ f)∆ϕ̂ =
∫
Rn

∆(Kj ∗ f)ϕ̂

=
∫
Rn
∂jfϕ̂ =

∫
Rn
iξj f̂ϕ =

∫
Rn
iξj f̂(− |ξ|−2)ψ
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Notice that the notation F(Kj ∗f)(ξ) = −iξi |ξ|−2 f̂ is very sloppy and makes actually
only sense in the distributional sense, as we can easily put a function f̂ ∈ L2(Rn)
such that −iξi |ξ|−2 f̂ /∈ L2(Rn).

(c) Now we want to calculate the Fourier transform of a function ∂i(Kj ∗ f) which
we know to lie in L2(Rn) by the lecture course. So as the inclusion of L1

loc(Rn) is still
injective and as we have proven the different Fourier transform to agree, we can also
simply calculate the Fourier transform of F(T∂i(Kj∗f)). Thus we get

−
n∑
k=1

((xk)2F(T∂i(Kj∗f))) = −
n∑
k=1

((xk)2ixiF(Tj)) = ixj(ixjF(Tf )).

As all the functions involved are L2 functions, we get the equation

F(∂i(Kj ∗ f)) = mijF(f).

(d) mij verifies the condition of the multiplier theorem, so we have that for 1 < p <∞,
there is a constant C := C(n, p) > 0 such that for every u ∈ C∞0 (Rn), we have

‖∂i(Kj ∗ f)‖Lp ≤ C ‖f‖Lp .

We also know that ∂i(Kj ∗∆u) = ∂i∂ju for every u ∈ C∞0 (Rn) and so plugging in
f := ∆u into the previous inequality gives exactly the Calderòn–Zygmund inequalities.
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