Exercise sheet 1

Due date: 13:00, March 7.

Location: Next to HG G 52.1.

Exercise 1.1 Let \succeq be a preference order on C satisfying axioms (P1)-(P4). A function $\mathcal{U} : C \to \mathbb{R}$ is called a *utility functional representing* \succeq if

 $c \succeq c' \iff \mathcal{U}(c) \ge \mathcal{U}(c').$

(a) Show that all \mathcal{U} representing \succeq must be quasiconcave, i.e., for all $c, c' \in \mathcal{C}$ and $\lambda \in [0, 1]$,

$$\mathcal{U}(\lambda c + (1 - \lambda)c') \ge \min\{\mathcal{U}(c), \mathcal{U}(c')\}.$$

- (b) Which axioms are needed for this result?
- (c) Show by a counterexample that a preference order can be represented by a utility functional which is not concave.

Exercise 1.2 Suppose \mathcal{D} is complete. Show that $B(e, \pi) = \mathcal{C}$ for all e if and only if there exists arbitrage of the second kind.

Exercise 1.3 Let \succeq be a preference relation on C. The goal is to show that \succeq has a continuous, numerical representation (utility functional).

- (a) Denote by **1** the vector with all components equal to 1. Prove that for each $c \in C$ there exists a unique $\alpha(c) \in \mathbb{R}$ such that $\alpha(c)\mathbf{1} \sim c$.
- (b) Define $\mathcal{U}(c) = \alpha(c)$ and show that \mathcal{U} is a continuous, numerical representation of \succeq .

An increasing preference relation on C is called *homothetic* if

$$c \sim c' \Longrightarrow \beta c \sim \beta c', \quad \forall \beta \ge 0.$$

(c) Show that \succeq is homothetic if and only if it admits a utility functional \mathcal{U} that is homogeneous of degree one, i.e., $\mathcal{U}(\beta c) = \beta \mathcal{U}(c)$ for all $\beta \ge 0$.