Exercise sheet 1

Due date: 13:00, March 7.
Location: Next to HG G 52.1.

Exercise 1.1 Let \succeq be a preference order on \mathcal{C} satisfying axioms (P1)-(P4). A function $\mathcal{U}: \mathcal{C} \rightarrow \mathbb{R}$ is called a utility functional representing \succeq if

$$
c \succeq c^{\prime} \Longleftrightarrow \mathcal{U}(c) \geq \mathcal{U}\left(c^{\prime}\right)
$$

(a) Show that all \mathcal{U} representing \succeq must be quasiconcave, i.e., for all $c, c^{\prime} \in \mathcal{C}$ and $\lambda \in[0,1]$,

$$
\mathcal{U}\left(\lambda c+(1-\lambda) c^{\prime}\right) \geq \min \left\{\mathcal{U}(c), \mathcal{U}\left(c^{\prime}\right)\right\}
$$

(b) Which axioms are needed for this result?
(c) Show by a counterexample that a preference order can be represented by a utility functional which is not concave.

Exercise 1.2 Suppose \mathcal{D} is complete. Show that $B(e, \pi)=\mathcal{C}$ for all e if and only if there exists arbitrage of the second kind.

Exercise 1.3 Let \succeq be a preference relation on \mathcal{C}. The goal is to show that \succeq has a continuous, numerical representation (utility functional).
(a) Denote by 1 the vector with all components equal to 1 . Prove that for each $c \in \mathcal{C}$ there exists a unique $\alpha(c) \in \mathbb{R}$ such that $\alpha(c) \mathbf{1} \sim c$.
(b) Define $\mathcal{U}(c)=\alpha(c)$ and show that \mathcal{U} is a continuous, numerical representation of \succeq.

An increasing preference relation on \mathcal{C} is called homothetic if

$$
c \sim c^{\prime} \Longrightarrow \beta c \sim \beta c^{\prime}, \quad \forall \beta \geq 0
$$

(c) Show that \succeq is homothetic if and only if it admits a utility functional \mathcal{U} that is homogeneous of degree one, i.e., $\mathcal{U}(\beta c)=\beta \mathcal{U}(c)$ for all $\beta \geq 0$.

