Exercise sheet 2

Due date: 13:00, March 14.
Location: Next to HG G 52.1.

Exercise 2.1 Consider a market with a numéraire and the payoff matrix \mathcal{D}. Denote by π an equilibrium price vector at time 0 . Let \mathcal{D}^{\prime} be a payoff matrix with the property

$$
\operatorname{Im} \mathcal{D}^{\prime}=\operatorname{Im} \mathcal{D}
$$

(a) Denote by $B\left(e^{i}, \pi ; \mathcal{D}\right)$ the budget set

$$
\left\{c \in \mathcal{C} \mid \exists \vartheta \in \mathbb{R}^{N} \text { with } c \leq e^{i}+\overline{\mathcal{D}} \vartheta\right\}
$$

Construct π^{\prime} such that $B\left(e^{i}, \pi ; \mathcal{D}\right)=B\left(e^{i}, \pi^{\prime} ; \mathcal{D}^{\prime}\right)$.
(b) Show that if $\left(\left(e^{1}, \ldots, e^{I}\right), \mathcal{D}\right)$ has an equilibrium with consumption allocation $\left(c^{1}, \ldots, c^{I}\right)$, then there exists an equilibrium for $\left(\left(e^{1}, \ldots, e^{I}\right), \mathcal{D}^{\prime}\right)$ with the same consumption.
Hint: Use the price vector π^{\prime}.
Exercise 2.2 Consider the one-step binomial market described by

$$
\pi=\binom{1}{1} \quad \text { and } \quad \mathcal{D}=\left(\begin{array}{ll}
1+r & 1+u \\
1+r & 1+d
\end{array}\right)
$$

for some $r>-1, u$ and d with $u>d$.
(a) Show that this market is free for arbitrage if and only if $u>r>d$.
(b) Construct an arbitrage opportunity for a market where $u=r>d$.

Exercise 2.3 Consider the one-step trinomial market described by

$$
\pi=\binom{\pi^{0}}{\pi^{1}} \quad \text { and } \quad \mathcal{D}=\left(\begin{array}{lc}
\pi^{0}(1+r) & \pi^{1}(1+u) \\
\pi^{0}(1+r) & \pi^{1}(1+m) \\
\pi^{0}(1+r) & \pi^{1}(1+d)
\end{array}\right)
$$

for some $r>-1, u, m$ and d with $u>m>d$ and $u>r>d$.
(a) Show that $\mathbb{P}\left(D^{0}\right)$ is convex.

Note: The particular structure given in this exercise is not necessary.
(b) Calculate the set $\mathbb{P}\left(D^{0}\right)$ of equivalent martingale measures.

Hint: Use the probability of the 'middle outcome' as a parameter in a parametrization of $\mathbb{P}\left(D^{0}\right)$ as a line segment in \mathbb{R}^{3}.
(c) Denote by $\mathbb{P}_{a}\left(D^{0}\right)$ the set of all martingale measures Q which are absolutely continuous with respect to P, i.e., $Q \ll P$. An element $R \in \mathbb{P}_{a}\left(D^{0}\right)$ is an extreme point if $R=\lambda Q+(1-\lambda) Q^{\prime}$ with $0<\lambda<1$ and $Q, Q^{\prime} \in \mathbb{P}_{a}\left(D^{0}\right)$ implies $Q=Q^{\prime}$, i.e., R cannot be written as a strict convex combination of elements in $\mathbb{P}_{a}\left(D^{0}\right)$.
Find the extreme points of $\mathbb{P}_{a}\left(D^{0}\right)$ and represent $\mathbb{P}\left(D^{0}\right)$ by writing it as a (strict) convex combination of such extreme points. Verify that this coincides with the answer found above.

