Exercise sheet 2

Due date: 13:00, March 14.

Location: Next to HG G 52.1.

Exercise 2.1 Consider a market with a numéraire and the payoff matrix \mathcal{D} . Denote by π an equilibrium price vector at time 0. Let \mathcal{D}' be a payoff matrix with the property

$$\operatorname{Im} \mathcal{D}' = \operatorname{Im} \mathcal{D}.$$

(a) Denote by $B(e^i, \pi; \mathcal{D})$ the budget set

$$\left\{ c \in \mathcal{C} \middle| \exists \vartheta \in \mathbb{R}^N \text{ with } c \leq e^i + \overline{\mathcal{D}}\vartheta \right\}.$$

Construct π' such that $B(e^i, \pi; \mathcal{D}) = B(e^i, \pi'; \mathcal{D}')$.

(b) Show that if $((e^1, \ldots, e^I), \mathcal{D})$ has an equilibrium with consumption allocation (c^1, \ldots, c^I) , then there exists an equilibrium for $((e^1, \ldots, e^I), \mathcal{D}')$ with the same consumption.

Hint: Use the price vector π' .

Exercise 2.2 Consider the one-step binomial market described by

$$\pi = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathcal{D} = \begin{pmatrix} 1+r & 1+u \\ 1+r & 1+d \end{pmatrix}$,

for some r > -1, u and d with u > d.

- (a) Show that this market is free for arbitrage if and only if u > r > d.
- (b) Construct an arbitrage opportunity for a market where u = r > d.

Exercise 2.3 Consider the one-step trinomial market described by

$$\pi = \begin{pmatrix} \pi^0 \\ \pi^1 \end{pmatrix} \quad \text{and} \quad \mathcal{D} = \begin{pmatrix} \pi^0 (1+r) & \pi^1 (1+u) \\ \pi^0 (1+r) & \pi^1 (1+m) \\ \pi^0 (1+r) & \pi^1 (1+d) \end{pmatrix},$$

for some r > -1, u, m and d with u > m > d and u > r > d.

(a) Show that $\mathbb{P}(D^0)$ is convex.

Note: The particular structure given in this exercise is not necessary.

(b) Calculate the set $\mathbb{P}(D^0)$ of equivalent martingale measures. Hint: Use the probability of the 'middle outcome' as a parameter.

Hint: Use the probability of the 'middle outcome' as a parameter in a parametrization of $\mathbb{P}(D^0)$ as a line segment in \mathbb{R}^3 .

(c) Denote by $\mathbb{P}_a(D^0)$ the set of all martingale measures Q which are absolutely continuous with respect to P, i.e., $Q \ll P$. An element $R \in \mathbb{P}_a(D^0)$ is an extreme point if $R = \lambda Q + (1 - \lambda)Q'$ with $0 < \lambda < 1$ and $Q, Q' \in \mathbb{P}_a(D^0)$ implies Q = Q', i.e., R cannot be written as a strict convex combination of elements in $\mathbb{P}_a(D^0)$.

Find the extreme points of $\mathbb{P}_a(D^0)$ and represent $\mathbb{P}(D^0)$ by writing it as a (strict) convex combination of such extreme points. Verify that this coincides with the answer found above.