Sheet 3

- 1. Prove the Mautner phenomenon for $SL_3(\mathbb{R})$.
- 2. Prove that for a group G (with the standing assumptions) the following are equivalent:
 - 1. G is amenable and has property (T)
 - 2. G is compact
- 3. Let π be a unitary representation of a group G. Let \mathcal{H}_{π}^* be the dual space of \mathcal{H}_{π} and define a representation $\overline{\pi}$ of G on \mathcal{H}_{π}^* by inverse transpose, i.e.:

$$\overline{\pi}_g \lambda(v) = \lambda(\pi_{g^{-1}}v) \quad \forall v \in \mathcal{H} \forall g \in G \forall \lambda \in \mathcal{H}_{\pi}^*$$

The representation $\overline{\pi}$ is called the *contragredient* of π .

- a) Prove that $\overline{\pi}$ is a unitary representation of G.
- b) Prove that the regular representation of G is isomorphic to its contragredient.
- c) Formulate a sufficient criterion π has to satisfy so that $\pi \cong \overline{\pi}$.
- 4. In what follows, π will always denote an irreducible unitary representation of G, and $[\pi]$ is the class of unitary representations of G isomorphic to π .
 - a) Find (a group G and) a cyclic representation ρ of G such that π has multiplicity more that 1 in ρ . *Hint:* The dihedral group is assumed to give a simple example.
 - b) Find an upper bound for the multiplicity of π in a cyclic representation ρ .