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Exercise 2

Amenability and (T) imply compactness: Assume that G is amenable and
has property (T ), then 1 < L2(G) and in particular L2(G) has a non-trivial fixed
vector.

Claim. Let f ∈ L2(G) invariant under G, then |f |2 is a constant function.

Define the complex valued measure mf (E) :=
∫
E
|f(x)|2 dx, defined on all Borel

subsets of G. By assumption on f , the measure mf is a non-trivial Haar measure,
and there exists a constant c > 0 such that dmf (x) = cdx. By uniqueness of
the Radon-Nikodym derivative (under our standing assumptions), it follows that

|f(x)|2 = c almost everywhere. As c > 0, G necessarily has finite Haar measure.
Hence G is compact.

Compactness implies amenability and (T). If G is compact, 1G ∈ L2(G)
and hence G is amenable. It remains to prove property (T). Assume that 1 ≺ π,
then by compactness, for all ε > 0 there exist vectors v1, . . . , vn(ε) ∈ Hπ such that

1 =
∑n(ε)
i=1 ‖vi‖

2
= 1 and:

sup
g∈G

∣∣∣∣∣∣1−
n(ε)∑
i=1

〈πgvi, vi〉

∣∣∣∣∣∣ < ε

Assume that the Haar measure on G is normalized, i.e. Vol (G) = 1. Let v1, . . . , vn
as above for some constant ε, let v :=

∑n
i=1 vi ∈ H⊕nπ and define a vector w ∈ H⊕nπ

by:

w =

∫
G

π⊕ng v dg

This is an invariant vector in H⊕nπ satisfying |1− 〈w,w〉| ≤ ε and thus for ε suffi-
ciently small, w is a non-trivial fixed vector in H⊕nπ . As the orthogonal projections
Pi : H⊕nπ → Hπ, (vj)

n
j=1 7→ vi are all G-equivariant and because w 6= 0, there is

some 1 ≤ i ≤ n such that Pi(w) 6= 0 is a non-trivial fixed vector in Hπ and hence
1 < Hπ.

Exercise 3

(a) Let Φ : Hπ → H∗π be the anti-linear isomorphism obtained from Fréchet-
Riesz. Let v, w ∈ H. Then:

πgΦ(v)(w) = 〈πg−1w, v〉Hπ = 〈w, πgv〉 = Φ(πgv)(w)

As v, w were arbitrary, it follows that Φ ◦ πg = πg ◦Φ for all g ∈ G. Hence:

〈πgΦ(v), πgΦ(w)〉H∗
π

=〈Φ(πgv),Φ(πgw)〉H∗
π

= 〈πgw, πgv〉Hπ
=〈w, v〉Hπ = 〈Φ(v),Φ(w)〉H∗

π
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As Φ is onto, as clearly πgπh = πgh and thus πg clearly is a linear bijection,
it follows that each πg is unitary. It remains to show continuity of the orbit
map. Let v ∈ Hπ, then:

‖πgΦ(v)− Φ(v)‖H∗
π

= ‖Φ(πgv − v)‖H∗
π

= ‖πgv − v‖Hπ
and thus π is a unitary representation of G.

(b) We prove that the regular representation λ of G is isomorphic to its contra-
gredient λ. To this end define a complex conjugation σ : L2(G) → L2(G)
by σ(f) = f a.e. whenever f ∈ L2(G). Letting Φ : L2(G)→ L2(G)∗ be the
anti-linear isometry obtained via Fréchet-Riesz, the map Φ ◦ σ is unitary:

〈Φ(f),Φ(h)〉L2(G)∗ = 〈h, f〉L2(G) = 〈f, h〉L2(G)

It is obvious that σ is G-equivariant and hence as of what we have shown
in part (a):

L2(G)
Φ◦σ //

λg

��

L2(G)∗

λg
��

L2(G)
Φ◦σ
// L2(G)∗

∀g ∈ G

(c) The argument in part (b) did only rely on the existence of a G-equivariant,
antilinear isometry of L2(G). Thus whenever one like this is available, the
contragredient and the original representation are isomorphic. Note that
in part (b) the G-equivariant, antilinear isometry was in fact an involution
ant L2(G) has an invariant real form.

Exercise 4

The solution to part (a) is very long, not because the problem is so difficult,
but because we present three different solutions, which show distinct properties of
unitary representations at work.

(a) Let Dih4 denote the dihedral group for the square, i.e. Dih4 is the group
generated by multiplication by i (denoted by r) and complex conjugation
(denoted by s): Dih4 = 〈r, s〉. The natural action of this group on the
two-dimensional real vector space C is real linear and preserves the inner
product (·, ·) on C ∼= R2. In what follows, in order to reduce confusion, we
denote by X the real vector space C equipped with the real linear repre-
sentation of r, s. The real linear representation extends to a unitary action
on the complexification X⊗R C, equipped with the inner product given on
simple tensors by:

〈x⊗ α, y ⊗ β〉 = (x, y)αβ x, y ∈ X, α, β ∈ C

As Dih4 is discrete, the orbit maps are continuous and thus the represen-
tation is unitary. The orbit under Dih4 of any non-trivial vector x ∈ X
generates X,as x and rx are linearly independent over R. Thus the repre-
sentation over X is irreducible over R.

Claim. The complexification of the representation is irreducible.1

1Note that the complexification of an irreducible representation over R need not be irreducible
over C. The representation of SO(2) over R2 is clearly irreducible, but its complexification on
C2 (which is unitary) is not irreducible: As SO(2) is compact, we know that the representation
decomposes as a direct sum of irreducible representations of SO(2) and because SO(2) is abelian,
the irreducible subrepresentations are all one-dimensional.



SOLUTIONS EXERCISE SHEET 3 3

Let v ∈ X⊗RC be any non-trivial vector and note that we can always write
v = x⊗ 1 + y ⊗ i with x, y ∈ X. It follows that rv = rx⊗ 1 + ry ⊗ i. Now
assume that rv and v are linearly dependent, i.e. there is α ∈ C such that
rv + αv = 0. Write α = a+ ib, then:

0 = rv + αv = (rx+ ax− by)⊗ 1 + (ry + bx+ ay)⊗ i

Recall that X ⊗R C ∼= C2 where the isomorphism sends x ⊗ 1 + y ⊗ i to
(x, y), thus for any w1, w2 ∈ X the vectors w1 ⊗ 1 and w2 ⊗ i are linearly
independent, unless both are trivial. Thus 0 = rv + αv implies that:

0 = rx+ ax− by 0 = ry + bx+ ay

If b = 0, then this implies rx = −ax and ry = −ay, which means x = y = 0.
So assume b 6= 0 and let x′ := b−1x, then y = rx′ + ax′ and:

0 = r2x′ + bx+ a2x′ + 2arx′ = (b2 + a2 − 1)x′ + 2arx′

Thus a = 0. But a = 0 yields rx′ = y and ry = −bx and thus x′ = bx.
As b 6= 0, thus implies x = 0 and hence y = 0. Thus rv and v are linearly
independent over C whenever v is non-trivial and as the complex dimension
of X⊗R C equals the real dimension of X, the representation is irreducible.

Claim. The sum V := (X⊗R C)⊕ (X⊗R C) is cyclic.

Let 1 ∈ C ∼= X be the first vector of the standard basis and consider
the cyclic subrepresentation W ⊆ V generated by v := (1⊗ 1, r1⊗ 1). We
claim that the orbit of v contains a basis of V so that W = V . We calculate
explicitely:

v =(1⊗ 1, i⊗ 1)

rv =(i⊗ 1,−1⊗ 1)

sv =(1⊗ 1,−i⊗ 1)

rsv =(i⊗ 1, 1⊗ 1)

As dimC V = 2 dimC(X ⊗R C) = 4, it suffices to show that the above
list is linearly independent. Note that for any two x, y ∈ X and for any
α = a+ ib ∈ C holds:

α(x⊗ 1, y ⊗ 1) = a(x⊗ 1, y ⊗ 1) + b(x⊗ i, y ⊗ i)

Hence for any finite collections {xi}ni=1, {yi}ni=1 in X, {αi = ai + ibi}ni=1 in
C holds:

0 =

n∑
i=1

αi(xi ⊗ 1, yi ⊗ 1)

⇔ 0 =

n∑
i=1

(
(aixi)⊗ 1, (aiyi)⊗ 1

)
=

n∑
i=1

(
(bixi)⊗ i, (biyi)⊗ i

)
⇔ 0 =

n∑
i=1

aixi =

n∑
i=1

aiyi =

n∑
i=1

bixi =

n∑
i=1

biyi

Thus it suffices to check that the vectors (1, i), (i,−1), (1,−i) and (i, 1)
in X × X are linearly independent over R, which reduces to an elemen-
tary calculation. Alternatively one checks that the representation X⊕X is
cyclic (by the same argument) and that – unlike irreducibility – cyclicity
is preserved under complexification which. This follows from the fact that
any R-basis {vi}ni=1 of a real vector space V is mapped to a C-basis of the
complexification V ⊗R C under v 7→ v ⊗ 1.
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Instead of proving that the sum (X ⊗R C) ⊕ (X ⊗R C) is a cyclic repre-
sentation – which is apparently a bit tedious – we could argue as follows:
As Dih4 is a finite group, the left-regular representation over L2(Dih4) is
cyclic, as it is generated by the orbit of the Dirac function concentrated at
the identity: δg = λgδe for all g ∈ Dih4. Using Peter-Weyl, we know that:

L2(Dih4) ∼=
⊕

[π]∈(Dih4 )̂

(dimπ)π

and hence if Dih4 has an irreducible representation of dimension at least 2,
then we have shown the claim. But X⊗R C is irreducible with dimension 2
as argued above.

We provide another argument which relies on describing the unitary
representations of Dih4 which have dimension one. By the preceding de-
scription of L2(Dih4), we know that dimL2(Dih4) = |Dih4| = 8. Thus if
we can show that the number of one-dimensional representations of Dih4

is less than 8, the Peter-Weyl theorem tells us that there must be an ir-
reducible representation of Dih4 of dimension at least 2 and that it will
have multiplicity greater than 1 in the cyclic representation L2(Dih4). Let
χ : Dih4 → S1 be a character (i.e. a one-dimensional, unitary represen-
tation). Then χ(r)4 = χ(r4) = 1 and χ(s)2 = χ(s2) = 1. It follows that
χ(s) ∈ {±1} and χ(r) ∈ {±1,±i}. Now note that for any z ∈ C holds
srs(z) = s(iz) = −iz and thus srs = r−1. Hence:

χ(r) = χ(r−1) = χ(srs) = χ(s)2χ(r) = χ(r)

as χ(s) ∈ {±1}. Hence in fact χ(r) ∈ {±1}, implying that |(Dih4)̂ | ≤ 4. As
dimL2(Dih4) = 8, we can deduce that there exists exactly one irreducible,
unitary representation of Dih4 of dimension more than 1 and indeed it must
be the representation of dimension 2 desribed above.

(b) As discussed previously, if G is a finite group, then L2(G) is cyclic and

by the Peter-Weyl theorem the multiplicity of [π] ∈ Ĝ inside L2(G) equals
dimπ. This suggests the general upper bound dimπ for the multiplicity of
an irreducible representation in any cyclic representation. If dimπ =∞, the
boun clearly holds, so we only need to consider the case where dimπ <∞.

Let ρ, π be cyclic representations of G and assume that π is irreducible

and finite dimensional. As ρ is cyclic, so is the restriction of ρ to H[π]
ρ .

For the sake of contradiction, we assume that the multiplicity of [π] in ρ is

strictly larger than d and after decomposing H[π]
ρ into an orthogonal sum

of representations in [π] and then restricting to the first d + 1 summands,

we can without loss of generality assume that H[π]
ρ
∼= (dimπ + 1)π. Under

this assumption holds:

BG(ρ, π) =
{
A ∈ B

(
(dimπ + 1)Hπ,Hπ

)
;A ◦ π⊕(d+1) = π ◦A

}
∼=
d+1⊕
i=1

BG(π, π) ∼= Cd+1

On the other hand we know that H[π]
ρ is cyclic, thus if we fix a generator v0

of H[π]
ρ , then every equivariant map A ∈ BG(ρ, π) is completely determined

by the value of Av0 ∈ Hπ. In particular, the linear map A 7→ Av0 is
injective, thus BG(ρ, π) ↪→ Hπ and it follows that dimBG(ρ, π) ≤ d, which
contradicts the previous calculation.
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