D-MATH, Winter 2016

Lineare Algebra I

Zwischenprüfung

24. Februar 2016

Prüfungsversion A

Wichtig:

- Die Prüfung dauert 120 Minuten.
- Bitte legen Sie Ihre Legi (Studierendenausweis) offen auf den Tisch.
- Notieren Sie die Version Ihrer Prüfung, Ihre Leginummer und Ihren Namen *in Block-schrift* auf dem Antwortblatt.
- Bitte lesen Sie die Aufgaben sorgfältig durch, und achten Sie besonders auf die Begriffe *abhängig* und *unabhängig*.
- Es wird nicht erwartet, dass Sie alle Aufgaben lösen. Aufgaben 1–11 sind grösstenteils rechnerisch, die übrigen Aufgaben sind theoretisch.
- Ein Antwortkästchen muss *ausgemalt* werden, um es zu markieren. Bitte schreiben Sie auf dem Antwortblatt nur mit Füllfederhalter oder Kugelschreiber und nur in blau oder schwarz. Machen Sie *keine* Notizen auf dem Antwortblatt. Korrekturen auf dem Antwortblatt bitte mit *Tipp-Ex* durchführen.
- Am Ende der Prüfung tragen Sie als Prüfsumme die Anzahl der von Ihnen ausgemalten Felder auf dem Antwortblatt ein.
- Nach Ende der Prüfung wird das Antwortblatt eingesammelt; das Aufgabenblatt können Sie mitnehmen.
- In jeder Aufgabe (bzw. Teilaufgabe, gekennzeichnet durch (i), (ii) usw.) ist genau eine Antwort richtig. Ist diese und nur diese Antwort ausgemalt, so erhalten Sie 2 Punkte. Ist keine Antwort ausgemalt, so erhalten Sie 0 Punkte.
 Ist eine falsche Antwort ausgemalt, so erhalten Sie 1 Minuspunkt.
- Hilfsmittel: Keine.

Viel Erfolg!

Wir bezeichnen als $\mathcal{P}=\mathbb{R}[X]$ den Vektorraum von Polynomen mit reellen Koeffizienten. Für $n\geq 0$, sei $\mathcal{P}_n=\{P\in\mathcal{P}: P(X)=a_0+a_1X+\cdots+a_nX^n\}$ der Unterraum der Polynome vom Grad $\leq n$.

- 1. Sei $A=\begin{pmatrix}2&1\\-3&0\end{pmatrix}$. Berechnen Sie $A^4-A^2+1_2$.
 - **a)** $\begin{pmatrix} -11 & 2 \\ 8 & 3 \end{pmatrix}$

c)
$$\begin{pmatrix} -11 & -6 \\ 18 & 1 \end{pmatrix}$$

b) $\begin{pmatrix} -11 & 2 \\ -8 & 3 \end{pmatrix}$

- **d)** $\begin{pmatrix} -11 & 6 \\ 18 & 1 \end{pmatrix}$.
- 2. Welche der folgenden Aussagen gilt für das Gleichungssystem

$$\lambda x + y = 1$$

$$x + \lambda y + z = \lambda$$

$$x + y + \lambda z = \lambda^2$$
?

- a) Das System hat eine eindeutige Lösung für alle $\lambda \in \mathbb{R} \setminus \{-2\}$.
- **b)** Das System hat keine Lösung für $\lambda = -2$.
- c) Das System hat mehr als eine Lösung für $\lambda = 0$.
- d) Keine von den Aussagen a), b), c) gilt.
- **3.** Sei V ein reeller Vektorraum, und $\{x, y, z\}$ eine linear unabhängige Menge in V. Ist die Menge $\{x + y, y + z, z + x\}$ linear abhängig?
 - a) Die Antwort hängt von den Vektoren x,y,z ab.
 - **b**) Ja.
 - c) Nein.
- 4. Sei V ein reeller Vektorraum, $u, v, w, z \in V$ und

$$v_1 = u + v + w + z$$

$$v_2 = 2u + 2v + w - z$$

$$v_3 = u - w + z$$

$$v_4 = -v + w - z$$

$$v_5 = u + v + 3w - z.$$

Ist die Menge $\{v_1, v_2, v_3, v_4, v_5\}$ linear abhängig?

- a) Die Antwort hängt von den Vektoren u, v, w, z ab.
- **b**) Ja.
- c) Nein.
- 5. Sei

$$S = \{(1, 1, 0, 1, 1), (0, 0, 1, 1, 0), (0, 1, 0, 0, 0), (1, 0, 0, 1, 1), (1, 0, 1, 0, 1)\} \subset \mathbb{R}^5.$$

Was ist die Dimension von $\langle S \rangle$?

- **a**) 5;
- **b**) 4;
- **c**) 3;
- **d)** 2.
- **6.** Bestimmen Sie die Dimension des Vektorraums $V = \{p \in \mathcal{P}_4 : p(1) + p(-1) = 0\}.$
 - **a)** dim V = 4.
- **b)** dim V = 3.
- **c)** dim V = 2.
- 7. Seien $\mathcal{B}=\{1,x,x^2\}$ und $\mathcal{C}=\{x^2,(x+1)^2,(x+2)^2\}$ geordnete Basen von \mathcal{P}_2 . Berechnen Sie die Basiswechselmatrix von \mathcal{B} zu \mathcal{C} .

a)
$$M_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} 0 & 1 & 4 \\ 0 & 2 & 4 \\ 1 & 1 & 1 \end{pmatrix}$$
.

d)
$$M_{\mathcal{B},\mathcal{C}} = \frac{1}{4} \begin{pmatrix} 2 & -4 & 4 \\ -1 & 4 & -3 \\ 4 & 0 & 0 \end{pmatrix}.$$

b)
$$M_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{pmatrix}.$$

e)
$$M_{\mathcal{B},\mathcal{C}} = \frac{1}{4} \begin{pmatrix} 2 & -3 & 4 \\ -4 & 4 & 0 \\ 2 & -1 & 0 \end{pmatrix}$$
.

c)
$$M_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 2 & 1 \\ 4 & 4 & 1 \end{pmatrix}$$
.

f)
$$M_{\mathcal{B},\mathcal{C}} = \frac{1}{4} \begin{pmatrix} 2 & -1 & 4 \\ -4 & 4 & 0 \\ 4 & -3 & 0 \end{pmatrix}$$
.

- **8.** Sei $A = \begin{pmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & -1 \end{pmatrix}$. Welche Aussage gilt?
 - a) Die Matrix A ist invertierbar und ihre Inverse hat Diagonaleinträge (-2, -8, 3).
 - **b)** Die Matrix A ist invertierbar und ihre Inverse hat Diagonaleinträge (1, 7, -10).

- c) Die Matrix A ist invertierbar und ihre Inverse hat Diagonaleinträge (-8, 18, 1).
- **d)** Die Matrix A ist invertierbar und ihre Inverse hat Diagonaleinträge (9, -5, 14).
- e) Die Matrix A ist nicht invertierbar.
- **9.** Sei f die lineare Abbildung

$$f: \mathcal{P}_4 \longrightarrow \mathcal{P}_4$$

 $P(X) \longmapsto (X+1)P'(X).$

Seien \mathcal{B} und \mathcal{C} die folgenden geordneten Basen von \mathcal{P}_4 :

$$\mathcal{B} = (1, x, x^2, x^3, x^4)$$
 und $\mathcal{C} = (1, x+1, x^2, x^3, (x+1)^4).$

(i) Berechnen Sie die Darstellungsmatrix von f bezüglich \mathcal{B} .

$$\mathbf{a)} \ \mathrm{Mat}(f; \mathcal{B}, \mathcal{B}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 4 & 4 \end{pmatrix}. \ \mathbf{c)} \ \mathrm{Mat}(f; \mathcal{B}, \mathcal{B}) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}.$$

b)
$$\operatorname{Mat}(f; \mathcal{B}, \mathcal{B}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 0 & 4 \end{pmatrix}$$
. **d)** $\operatorname{Mat}(f; \mathcal{B}, \mathcal{B}) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 \\ 0 & 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}$.

(ii) Berechnen Sie die Darstellungsmatrix von f bezüglich der Basen \mathcal{B} und \mathcal{C} .

e)
$$\operatorname{Mat}(f; \mathcal{B}, \mathcal{C}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 3 & 0 \\ 12 & -12 & -24 & -12 & 4 \end{pmatrix}.$$

$$\mathbf{f)} \ \operatorname{Mat}(f; \mathcal{B}, \mathcal{C}) = \begin{pmatrix} 0 & 0 & -1 & 0 & 12 \\ 0 & 1 & 1 & 0 & -12 \\ 0 & 0 & 2 & 3 & -24 \\ 0 & 0 & 0 & 3 & -16 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}.$$

$$\mathbf{g)} \ \operatorname{Mat}(f; \mathcal{B}, \mathcal{C}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -2 & 2 & 2 & 0 & 0 \\ 0 & 0 & 3 & 3 & 0 \\ 12 & -16 & -24 & -12 & 4 \end{pmatrix}.$$

$$\mathbf{h)} \ \operatorname{Mat}(f; \mathcal{B}, \mathcal{C}) = \begin{pmatrix} 0 & 0 & -2 & 0 & 12 \\ 0 & 1 & 2 & 0 & -16 \\ 0 & 0 & 2 & 3 & -24 \\ 0 & 0 & 0 & 3 & -12 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}.$$

10. Bestimmen Sie den Rang der Matrizen

$$A = \begin{pmatrix} 3 & 1 & 1 & 4 \\ 0 & 4 & 10 & 1 \\ 1 & 7 & 17 & 3 \\ 2 & 2 & 4 & 3 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} -1 & 2 & 0 & 1 & 4 \\ 1 & 2 & 3 & -1 & 5 \\ 0 & 4 & 3 & 2 & 9. \end{pmatrix}.$$

$$A = 4, \operatorname{Rang} B = 3.$$

$$\mathbf{d}) \operatorname{Rang} A = 3, \operatorname{Rang} B = 3$$

- **b)** Rang A = 3, Rang B = 4.
- c) Rang A = 3, Rang B = 3.
- f) Rang A=2, Rang B=2.

11. Sind die folgenden Mengen linear unabhängig?

- (i) $\{1+i, 1-i\} \subset \mathbb{C}$, wobei \mathbb{C} als ein \mathbb{C} -Vektorraum aufgefasst wird;
- (ii) $\{1+i,1-i\}\subset\mathbb{C}$, wobei $\mathbb C$ als ein $\mathbb R$ -Vektorraum aufgefasst wird;
- (iii) $\{x^3+1, x^2+x+1, x^3+x+1, x^2+2\} \subset \mathcal{P}_3$.
- (iv) $\{(1,2,3,4), (-3,4,2,8), (-3,9,1,3)\}\subset \mathbb{R}^4$;
- (v) $\{(1,0,0,1), (2,3,-3,9), (1,3,-4,7), (2,0,1,3)\} \subset \mathbb{R}^4$.

12. Sei V der Vektorraum von Funktionen $f:[0,1]\to\mathbb{B}$. Sind die folgenden Mengen linear unabhängig in V?

- (i) $\{f_1, f_2, f_3, f_4\}$, wobei $f_1(x) = 1$, $f_2(x) = x^2$, $f_3(x) = (x+1)^2$, $f_4(x) = x$;
- (ii) $\{f_1, f_2, f_3\}$, wobei f_1, f_2, f_3 wie in (i);
- (iii) $\{h_n \mid n \in \mathbb{N}\}$, wobei $h_n(x) = 1/(x+n)$;
- (iv) $\{g_n \mid n \in \mathbb{N}\}$, wobei $g_n(x) = e^{nx}$.

13. Sei $V = M_{2,2}(\mathbb{K})$. Sind die folgenden Mengen Unterräume von V?

(i)
$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V \mid a = d \right\};$$

(iii)
$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V \mid ad - bc \neq 0 \right\};$$

(ii)
$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V \mid d = 0 \right\};$$

(iv)
$$\left\{ \begin{pmatrix} a & b \\ 1 & d \end{pmatrix} \in V \right\}$$
.

Hinweis zu den Aufgaben 14-21. Eine Aussage, die Variablen beinhaltet, gilt genau dann als wahr (W), wenn sie für jede Wahl der Variablen zutrifft. Amsonsten gilt sie als falsch (F).

- **14.** Sei $f: \mathcal{P}_n \to \mathcal{P}_n$ die Abbildung sodass f(P) = P + P''. Welche Aussagen sind wahr?
 - (i) f ist surjektiv.
 - (ii) f ist injektiv.
- **15.** Sei V ein Vektorraum über \mathbb{K} und $S \subset V$ eine Untermenge. Welche der folgenden Aussagen sind wahr?
 - (i) Falls $|S| \leq \dim(V)$, ist S ein Erzeugendensystem von V.
 - (ii) Falls S ein Unterraum ist, dann ist S linear unabhängig.
 - (iii) S enthält eine Basis von V.
- **16.** Sei $f:V\to W$ eine lineare Abbildung zwischen Vektorräumen. Welche Aussagen sind wahr?
 - (i) Für jeden Untervektorraum $W' \subset W$ ist das Urbild

$$f^{-1}(W') := \{ v \in V \mid f(v) \in W' \}$$

ein Unterraum von V.

(ii) Für jeden Untervektorraum $W'\subset W$ ist das Urbild $f^{-1}(W')$ ein Unterraum von V, und es gilt

$$\dim f^{-1}(W') = \dim \operatorname{Ker}(f) + \dim(\operatorname{Im}(f) \cap W').$$

- (iii) Falls das Bild von f eine Basis von W enthält, ist f surjektiv.
- (iv) Falls $\dim(V) < \dim(W)$, ist f nicht injektiv.
- (v) Falls $S \subset V$ linear unabhänging ist, dann ist $f(S) \subset W$ linear unabhängig.

- 17. Sei $V = \mathbb{R}[X]$ und $f: V \to V$ die lineare Abbildung sodass f(P)(X) = P(X+1), z.B. $f(X^2) = (X+1)^2$. Welche Aussagen sind wahr?
 - (i) Die Abbildung f ist bijektiv und $f^{-1}(P) = P 1$.
 - (ii) Die Abbildung f ist injektiv.
 - (iii) Die Abbildung f ist surjektiv.
- **18.** Sei $V \neq \{0\}$ ein Vektorraum. Welche der folgenden Aussagen sind wahr für alle $x, y, z \in V \setminus \{0\}$ mit x + y + z = 0?
 - (i) $\dim \langle \{x, y, z\} \rangle = 2$.
 - (ii) $\langle \{x, y\} \rangle = \langle \{y, z\} \rangle$.
 - (iii) Die Menge $\{x, y, z\}$ ist linear unabhängig.
- **19.** Seien $A \in M_{m,n}(\mathbb{K})$ und $B \in M_{n,m}(\mathbb{K})$. Welche Aussagen sind wahr?
 - (i) Sei m = 3 und n = 2. Dann ist AB nicht invertierbar.
 - (ii) Wenn A und B invertierbar sind, dann ist AB auch invertierbar.
 - (iii) Wenn $AB = 1_m$, dann ist $BA = 1_n$.
- **20.** Seien $m, n \in \mathbb{N}$ und $A \in M_{m,n}(\mathbb{K})$ eine invertierbare Matrix. Welche Aussagen sind wahr?
 - (i) $A^2 \neq 0$.
 - (ii) Kein Koeffizient a_{ij} von A ist Null.
 - (iii) $m \ge n$.
 - (iv) $A^{-1} \in M_{n,m}(\mathbb{K})$.
 - (v) m = n.
- 21. Welche Aussagen sind wahr?
 - (i) Für $A=\begin{pmatrix}0&1&2&1\\-1&2&2&3\\2&-3&0&1\end{pmatrix}$ ist die lineare Abbildung $f_A:\mathbb{R}^4\to\mathbb{R}^3$ injektiv.
 - (ii) Eine lineare Abbildung ist injektiv genau dann, wenn sie surjektiv ist.