Homework Problem Sheet 1

For some problems, parts of the solution are already given. Fill in the gaps and complete the proofs where you see a red band at the left margin.
Introduction. Floating point arithmetic, rounding errors and SVD.

Problem 1.1 Floating-Point Arithmetic

Every element $x \in \mathbb{F}$, where \mathbb{F} denotes the (finite) set $\mathbb{F}=\mathbb{F}\left(\beta, t, e_{\min }, e_{\max }\right)$ of floating point numbers with $\beta \in \mathbb{N}, \beta \geqslant 2, t \in \mathbb{N}$ and $e_{\min } \leqslant e_{\max } \in \mathbb{Z}$, is of the form

$$
x= \pm \beta^{e} \sum_{i=1}^{t} \frac{d_{i}}{\beta^{i}}, \quad \text { where }\left\{\begin{array}{l}
\left\{d_{i}\right\}_{i=1}^{t} \subset\{0,1, \ldots, \beta-1\} \\
x=0 \Longleftrightarrow d_{1}=0 \\
e \in \mathbb{Z} \cap\left[e_{\min }, e_{\max }\right]
\end{array}\right.
$$

To approximate a real number $x \in \mathbb{R}$ by rounding to a floating point number $\operatorname{rd}(x) \in \mathbb{F}$, it is reasonable to take a "nearest" floating point number, i.e. a number $\operatorname{rd}(x) \in \mathbb{F}$ such that $\mid \operatorname{rd}(x)-$ $x\left|=\min _{y \in \mathbb{F}}\right| y-x \mid$. If the latter minimum is not unique, i.e. if there are two $y \in \mathbb{F}$ minimizing $|y-x|, \operatorname{rd}(x)$ is defined as the one with d_{t} even.
Now, consider $\mathbb{F}=\mathbb{F}(2,3,-1,1)$.
(1.1a) Determine all numbers in \mathbb{F}. Do that first by hand, and then write a MatLab function that handles it.
(1.1b) Mark \mathbb{F} on the real number line. You may want to do this in Matlab.
(1.1c) Sketch the graphs of the functions

$$
\operatorname{rd}:\left[x_{\min } ; x_{\max }\right] \rightarrow \mathbb{F}, x \mapsto \operatorname{rd}(x) \quad \text { and } \quad \text { err }:\left[x_{\min } ; x_{\max }\right] \rightarrow \mathbb{R}, x \mapsto|\operatorname{rd}(x)-x|,
$$

where $x_{\text {min }}:=\min \{x \in \mathbb{F} \mid x>0\}$ and $x_{\text {max }}:=\max \mathbb{F}$.
Listing 1.1: Testcalls for Problem 1.1

```
F = ComputeF (2, 3,-1,1)
```

Listing 1.2: Output for Testcalls for Problem 1.1

```
>> test_call
F =
```

```
0.2500
0.3750
    0.3125
    0.4375
    0.5000
    0.7500
    0.6250
    0.8750
    1.0000
    1.5000
    1.2500
    1.7500
```


Problem 1.2 Round-off Error Analysis

This problem considers asymptotic round-off analysis as presented in [NMI, Sect. 1.3] and [NMI, Sect. 1.4]. The attribute "asymptotic" indicates that you may assume all relative errors δ introduced by elementary operations to be so small that you can use linearization (Taylor expansion) around zero and subsequently drop all "second order terms" of size $O\left(\delta^{2}\right)$.
Let $|x|<1$, the MATLAB functions as in (x) and atan (x) compute $\arcsin (x)$ and $\arctan (x)$ respectively, with relative error $\leq u(\mathbb{F})$. It holds

$$
\begin{equation*}
f(x):=\arctan (x)=\arcsin \left(\frac{x}{\sqrt{1+x^{2}}}\right)=: g(x) \tag{1.2.1}
\end{equation*}
$$

(1.2a) Implement a MATLAB routine that computes and print the values of the relative error

$$
\left|\frac{g(x)-f(x)}{f(x)}\right|
$$

with respect to the atan-function, for $x=10^{-5}, 10^{-4}, \ldots, 1$ and for $x=10^{6}, 10^{7}, \ldots, 10^{11}$. For which values of x is formula (1.2.1) unstable?
(1.2b) Gauge the propagation of round-off errors introduced by the division in $f(x)$. Compute the relative error of

$$
\tilde{f}(x)=\arcsin \left(\frac{x}{\sqrt{1+x^{2}}}(1+\delta)\right)
$$

with respect to $f(x)$. When is the error large for small values of δ ?
Hint: Use Taylor expansions.
Solution: The Taylor expansion of $\widetilde{f}(x+x \delta)=\widetilde{f}(x)+x \delta \widetilde{f}^{\prime}(x)+\mathcal{O}\left(\delta^{2}\right)$ reads

Neglecting the terms $\mathcal{O}\left(\delta^{2}\right)$, the relative error is
(1.2c) Analyze the propagation of round-off errors in floating-point arithmetic by performing a complete round-off analysis of (1.2.1) as in [NMI, Sect. 1.4].
Solution: Let us denote by $\delta_{1}, \delta_{2}, \delta_{3}$ and δ_{4} the errors generated by the arcsin function, division, extraction of square root and square power operation respectively. Let $\left|\delta_{i}\right| \leq u(\mathbb{F})$ and

$$
\begin{equation*}
\widetilde{g}(x)=\arcsin \left(\frac{x}{\sqrt{1+x^{2}\left(1+\delta_{4}\right)}\left(1+\delta_{3}\right)}\left(1+\delta_{2}\right)\right)\left(1+\delta_{1}\right) . \tag{1.2.2}
\end{equation*}
$$

Using Taylor expansion and omitting higher order terms, one has

$$
\sqrt{1+x^{2}\left(1+\delta_{4}\right)}=
$$

Moreover, exploiting the fact that $\frac{1}{1+\eta} \approx 1-\eta$ for $|\eta| \leq u(\mathbb{F})$, yields

$$
\frac{x}{\sqrt{1+x^{2}\left(1+\delta_{4}\right)}\left(1+\delta_{3}\right)}\left(1+\delta_{2}\right)=
$$

The Taylor expansion of $\arcsin (x(1+\delta))$ reads

$$
\arcsin (x+x \delta)=\arcsin x+\frac{x \delta}{\sqrt{1-x^{2}}}=\arcsin x\left(1+\frac{x \delta}{\arcsin x \sqrt{1-x^{2}}}\right) .
$$

Substituting the Taylor expansions of the single terms into (1.2.2), results in

Problem 1.3 Summing the Harmonic Series

In analysis you have seen that the harmonic series diverges. On a computer this will not happen, of course!

The series $\sum_{k=1}^{+\infty} k^{-1}$ is called the harmonic series. The partial sums, $S_{n}=\sum_{k=1}^{n} k^{-1}$, can be computed recursively by setting $S_{1}=1$ and using $S_{n}=S_{n-1}+n^{-1}$. If this computation were carried out on your computer, what is the largest S_{n} that would be obtained (approximately)? What is the according n (approximately)? (Do not do this experimentally on the computer; it is too expensive.)
HINT: Find n such that $\left|\frac{S_{n}-S_{n-1}}{S_{n}}\right|<u(\mathbb{F})$, where $u(\mathbb{F})$ is the unit round-off of the floating-point number system \mathbb{F}. To this end, first prove that $\sum_{k=1}^{n} \frac{1}{k}>\ln (n)$.
Solution: We show $\sum_{k=1}^{n} \frac{1}{k}>\ln (n+1)>\ln (n)$:

Problem 1.4 Singular Value Decomposition and Matrix Norms

Let \mathbf{A} be given by

$$
\mathbf{A}:=\left(\begin{array}{cc}
5 & 3 \\
0 & -4
\end{array}\right) .
$$

(1.4a) Find orthogonal matrices \mathbf{U} and \mathbf{V} in $\mathbb{R}^{2 \times 2}$ and a diagonal Matrix Σ such that $A=$ $\mathbf{U \Sigma} \mathbf{V}^{\top}$.

Solution: The matrices U and V result - up to the choice of sign - from the eigenvalue decomposition of the matrices $\mathbf{A} \mathbf{A}^{\top}$ and $\mathbf{A}^{\top} \mathbf{A}$. We get
(1.4b) Compute the operator-2-norm, the Frobenius norm and the spectral radius of both \mathbf{A} and \mathbf{A}^{-1}. For this, refer to [NMI, Prop 0.51] from the lecture notes.
Solution: The upper triangular matrix A obviously has eigenvalues 5 and -4 , so the spectrum is $\sigma(\mathbf{A})=\{5,-4\}$.

Problem 1.5 The Butterfly Effect

Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $x \mapsto \frac{1}{5} x^{5}-\frac{2}{3} x^{3}+x$.
(1.5a) Determine the sequence $x^{(n)}, n=0,1, \ldots$, of real numbers defined by

$$
\begin{equation*}
x^{(0)}:=\sqrt{\frac{25+2 \sqrt{55}}{27}} \quad \text { and } \quad x^{(n+1)}:=\Psi\left(x^{(n)}\right), \quad \text { where } \quad \Psi(x):=x-\frac{f(x)}{\frac{\mathrm{d} f}{\mathrm{~d} x}} . \tag{1.5.1}
\end{equation*}
$$

Remark: The iteration $x \mapsto \Psi^{(n)}(x)$ is known as Newton's method and is used to find zeros of f.
(1.5b) Calculate the first 50 terms of the sequence $x^{(n)}$ in MATLAB and plot them. How does the behaviour of the calculated sequence differ from the behaviour of the analytically analized sequence from subproblem (1.5a)? Why?

Published on February 26, 2016.

References

[NMI] Lecture Notes for the course "Numerische Mathematik I".

Last modified on February 25, 2016

