
Prof. Ch. Schwab
B. Fitzpatrick
J. Zech

Spring Term 2016

Numerische Mathematik I
ETH Zürich
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For some problems, parts of the solution are already given. Fill in the gaps and complete the
proofs where you see a red band at the left margin.
Introduction. Landau notation, LU-decomposition

Problem 2.1 Landau-Notation
For the following exercises, use the definition in [NMI, Ch. 1.6].

(2.1a) For fi(x) = O(gi(x)), gi(x) > 0, i = 1, 2 and x → a, a ∈ R ∪ {±∞}, prove the
following two rules:

f1(x) + f2(x) = O(g1(x) + g2(x)) (2.1.1)
and f1(x)f2(x) = O(g1(x)g2(x)). (2.1.2)

(2.1b) Prove that for s > 0 and n→∞, we have n!ns = o(nn).

HINT: Use the inequality
n∑
k=1

log k 6 n log
n+ 1

2
, (2.1.3)

a result from Jensen’s inequality.

(2.1c) We always consider n→∞. Prove the following statements:

(i) 2n = O(3n−17) but 3n−17 6= O(2n).

(ii) For all ε > 0, we have 2n+ε = O(2n), but 2n(1+ε) 6= O(2n).

(iii) For all ε > 0, we have log(2n(1+ε)) = O(log(2n)).

Problem 2.2 Forward and Backward Error of the LU-Decomposition
(2.2a) Write two MATLAB functions forwardsub(A,b) and backwardsub(A,b) that
perform forward- and backward-substitution following [NMI, Alg. 2.1] and [NMI, Alg. 2.2] for a
lower and an upper triangular matrix A, respectively, and a vector b, such that the output solves
Ax = b.

(2.2b) Write a MATLAB function lrsolve(A, b) that solves a linear system Ax = b via a
LU-decomposition without pivoting. Use your functions from (2.2a) and the LU-decomposition
lr(A) from the course website.
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(2.2c) Write a MATLAB function estimateBError(A) that calculates the backward error
of the LU-decomposition of a matrix A in the 2-norm with the help of

‖∆A‖2 6 n(3γn + γ2n)
∥∥|L̂||Û|∥∥

2
(compare [NMI, Thm. 2.15] and its norm representation).

Use the unit roundoff u = u(F) for double floating point numbers.

(2.2d) Implement a MATLAB function calcMinBError(A, b) that calculates the mini-
mal possible backward error for the system Ax = b using the residuum and following [NMI,
Thm. 2.17].

(2.2e) Write a MATLAB script that plots the minimum and the estimate of the backward error
in a logarithmic diagram dependent on the size n of the matrix, where n ∈ {4, . . . , 20}. For this,
let A be the Hilbert-Matrix of size n (MATLAB function hilb(n)) and let the right side b of
the system be a vector with all entries equal to 1 (MATLAB function ones(n,1)).

In the same diagram, plot the exact forward error ‖x− x̂‖2/‖x‖2 that is given by the (provided)
function calcFError(n).

Compare the behaviour of the backward and the forward error. What do the curves imply for the
accuracy of the calculated solution x̂ of Ax = b and the product Ax̂?

Problem 2.3 LU-Decomposition
(2.3a) For the lower triangular matrices Lk ∈ Rn×n, k = 1, . . . , n − 1, from [NMI, Eq. (2.5)],
prove the following properties:

(i) L−1k is given by [NMI, Eq. (2.7)].

(ii) L = L−11 L−12 · . . . · L−1n−1 is given by [NMI, Eq. (2.8)].

Solution:

(i) We write Lk and L−1k as

Lk = I− uk · e>k , and L−1k = I + uk · e>k ,

where uk = (0, . . . , 0, lk+1,k, . . . , ln,k)
> and ek is the kth unit vector. Their product gives

(ii) For the second property, we proceed as before:
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(2.3b) Prove that the algorithm for the LU-decomposition without pivoting does not terminate
for strictly row diagonally dominant matrices A ∈ Rn×n.

HINT: A matrix A ∈ Rn×n is said to be strictly row diagonally dominant if |aii| >
∑n

j=1,j 6=i |aij|
for all i = 1, . . . , n.

Solution: Let A := (aij)
n
i,j=1 ∈ Cn×n be strictly row diagonally dominant. We do the first step

of the algorithm for the LU-decomposition without pivoting ([NMI, Alg. 2.8]):a11 . . . a1n
... . . . ...
an1 . . . ann

;


a11 a12 . . . a1n
0 ã22 . . . ã2n
...

... . . . ...
0 ãn2 . . . ãnn


We want to show that the resulting matrix Ã = (ãij)

n
i,j=2 is strictly row diagonally dominant.
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(2.3c) Given the matrix A ∈ R4,4,

A =


1 0 3 1
3 1 2 2
6 2 4 3
1 3 2 1


prove that the algorithm for the LU-decomposition without pivoting [NMI, Alg. 2.8] terminates
at the 3rd elimination step.

Solution: First note that A is regular. In view of [NMI, Thm. 2.9], we need to check whether its
leading principal minors Sk for k = 1, . . . , 3 are regular.

Problem 2.4 Completing the LU-Decomposition
Fill in the template of the MATLAB function lrsolve(A,b) from the course website which
calculates solutions of Ax = b by an LU decomposition and subsequent backward substitution.

Solution: The template is given in Listing 2.1.

Listing 2.1: Solving Ax = b by an LU decomposition
1 f u n c t i o n x = lrsolve(A, b)
2 % Given a matrix A and a column vector b, the function

3 % constructs matrices L, R such that

4 % L is lower triangular

5 % R is upper triangular

6 % A = L * R (up to roundoff)

7 % diag(L) = [1; 1; ...; 1]

8 % L, R have minimal generic size

9 % and returns an approximate solution x to A x = b

10 % using L, R by backsubstitution

11 %

12 % Author:

13 % Date:

14
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15 % Check if A is square

16 assert( a l l ( s i z e(A) == s i z e(A’)));
17 n = s i z e(A, 2);
18

19 % Make default vector x and matrices L, R

20 L = eye( s i z e(A));
21 R = A;
22 x = z e r o s(n, 1);
23

24 % ...

25 % TODO: Compute L, R and c = L\b explicitly

26 % ...

27

28 % Check integrity of the LR decomposition

29 assert(TestLR(A, L, R));
30 % and that indeed c = L\b

31 assert(norm(L*c - b, ’inf’) <= 1e-10 * norm(b,’inf’));
32

33 % ...

34 % TODO: Compute x=R\c by backsubstitution

35 % ...

36

37 % Check integrity of the solution

38 i f (norm(A*x-b, ’inf’) > 1e-9 * norm(b,’inf’))
39 warning(’Solution tolerance not met’);
40 end
41 end
42

43 f u n c t i o n ok = TestLR(A, L, R)
44 ok = false;
45 i f (˜ a l l ( a l l (L == t r i l (L))))
46 warning(’L must be lower triangular’);
47 e l s e i f (max(abs(diag(L) - 1)))
48 warning(’L(i,i) must be all ones’);
49 e l s e i f (˜ a l l ( a l l (R == t r i u(R))))
50 warning(’R must be upper triangular’);
51 e l s e i f ((norm(A-L*R, ’inf’) > 1e-8 * norm(A, ’inf’)))
52 warning(’L*R must approximate A’);
53 e l s e
54 ok = true;
55 end
56 end

Explicit computation of L, R and L−1b:
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Compute R−1c:

Problem 2.5 Solving A System of Linear Equations with Rounding
In [NMI, Sect. 2.5] it was demonstrated that roundoff can cause instability of Gaussian elimina-
tion, unless a suitable pivot policy is implemented. This problem examines this effect in detail
for a small example, similar to [NMI, Ex. 2.13] and [NMI, Ex. 2.25]. You are advised to study
these examples again before tackling this problem.

Let A ∈ R2×2 and b ∈ R2 be given by

A =

(
0.005 1

1 1

)
and b =

(
0.5
1

)
.

We will solve the system Ax = b for x using Gaussian elimination in different ways:

(2.5a) Without rounding errors.

Solution:
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By backward substitution, we see that the exact solution x has components

x2 =
99

199
≈ 0.497487 and x1 =

1

5 · 10−3

(
0.5− 99

199

)
=

100

199
≈ 0.502512. (2.5.1)

(2.5b) Without pivoting, i.e. without interchanging rows or columns, in the floating-point arith-
metic F(10, 3,−10, 10) up to three significant digits.

Solution:

Now, by backward substitution we obtain the solution x whose components are

x2 = 0.49748... ≈ 4.97 · 10−1 = 0.497 and x1 = 2 · 102 · (0.5− 0.497) = 0.6. (2.5.2)

(2.5c) With pivoting in the floating-point arithmetic F(10, 3,−10, 10).

Solution:

Now, we can again directly compute the solutions and round to the demanded three significant
digits to obtain

x2 = 4.95 · 10−1/9.95 · 10−1 = 0.49748 . . . ≈ 0.497 and x1 = 1− 0.497 = 0.503. (2.5.4)

Problem Sheet 2 Page 7 Problem 2.5



(2.5d) Compare and comment on the above results.

Remark: Calculations in floating-point arithmetic F are meant as follows: the results of ele-
mentary operations from {+,−, ·, /} are calculated exactly but rounded to a number in F before
being used for further calculations, see [NMI, Ch. 1].

Solution: Comparing the respective solutions in (2.5.1), (2.5.2) and (2.5.4), we see that there are
substantial differences in the calculated values for x1 and x2.

Published on March 3, 2016.
To be submitted on March 15, 2016.
MATLAB: Submit all files in the online system. Include the files that generate the
plots. Label all your plots. Include commands to run your functions. Comment
on your results.
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