Homework Problem Sheet 2

For some problems, parts of the solution are already given. Fill in the gaps and complete the proofs where you see a red band at the left margin.
Introduction. Landau notation, LU-decomposition

Problem 2.1 Landau-Notation

For the following exercises, use the definition in [NMI, Ch. 1.6].
(2.1a) For $f_{i}(x)=\mathcal{O}\left(g_{i}(x)\right), g_{i}(x)>0, i=1,2$ and $x \rightarrow a, a \in \mathbb{R} \cup\{ \pm \infty\}$, prove the following two rules:

$$
\begin{align*}
f_{1}(x)+f_{2}(x) & =\mathcal{O}\left(g_{1}(x)+g_{2}(x)\right) \tag{2.1.1}\\
\text { and } \quad f_{1}(x) f_{2}(x) & =\mathcal{O}\left(g_{1}(x) g_{2}(x)\right) . \tag{2.1.2}
\end{align*}
$$

(2.1b) Prove that for $s \geqslant 0$ and $n \rightarrow \infty$, we have $n!n^{s}=o\left(n^{n}\right)$.

Hint: Use the inequality

$$
\begin{equation*}
\sum_{k=1}^{n} \log k \leqslant n \log \frac{n+1}{2} \tag{2.1.3}
\end{equation*}
$$

a result from Jensen's inequality.
(2.1c) We always consider $n \rightarrow \infty$. Prove the following statements:
(i) $2^{n}=\mathcal{O}\left(3^{n-17}\right)$ but $3^{n-17} \neq \mathcal{O}\left(2^{n}\right)$.
(ii) For all $\epsilon>0$, we have $2^{n+\epsilon}=\mathcal{O}\left(2^{n}\right)$, but $2^{n(1+\epsilon)} \neq \mathcal{O}\left(2^{n}\right)$.
(iii) For all $\epsilon>0$, we have $\log \left(2^{n(1+\epsilon)}\right)=\mathcal{O}\left(\log \left(2^{n}\right)\right)$.

Problem 2.2 Forward and Backward Error of the LU-Decomposition

(2.2a) Write two Matlab functions forwardsub (A, b) and backwardsub (A, b) that perform forward- and backward-substitution following [NMI, Alg. 2.1] and [NMI, Alg. 2.2] for a lower and an upper triangular matrix \mathbf{A}, respectively, and a vector \mathbf{b}, such that the output solves $\mathrm{Ax}=\mathrm{b}$.
(2.2b) Write a Matlab function lrsolve (A, b) that solves a linear system $\mathbf{A x}=\mathbf{b}$ via a LU-decomposition without pivoting. Use your functions from (2.2a) and the LU-decomposition $\operatorname{lr}(A)$ from the course website.
(2.2c) Write a Matlab function estimateBError (A) that calculates the backward error of the LU-decomposition of a matrix \mathbf{A} in the 2-norm with the help of
$\|\Delta \mathbf{A}\|_{2} \leqslant n\left(3 \gamma_{n}+\gamma_{n}^{2}\right)\left\|\left|\widehat{\mathbf{L}}\|\widehat{\mathbf{U}} \mid\|_{2} \quad\right.\right.$ (compare [NMI, Thm. 2.15] and its norm representation).
Use the unit roundoff $u=u(\mathbb{F})$ for double floating point numbers.
(2.2d) Implement a MATLAB function calcMinBError (A, b) that calculates the minimal possible backward error for the system $\mathbf{A x}=\mathbf{b}$ using the residuum and following [NMI, Thm. 2.17].
(2.2e) Write a Matlab script that plots the minimum and the estimate of the backward error in a logarithmic diagram dependent on the size n of the matrix, where $n \in\{4, \ldots, 20\}$. For this, let \mathbf{A} be the Hilbert-Matrix of size n (Matlab function hilb (n)) and let the right side \mathbf{b} of the system be a vector with all entries equal to 1 (Matlab function ones $(\mathrm{n}, 1)$).

In the same diagram, plot the exact forward error $\|\mathbf{x}-\hat{\mathbf{x}}\|_{2} /\|\mathbf{x}\|_{2}$ that is given by the (provided) function calcFError (n).

Compare the behaviour of the backward and the forward error. What do the curves imply for the accuracy of the calculated solution $\hat{\mathbf{x}}$ of $\mathbf{A x}=\mathbf{b}$ and the product $\mathbf{A} \hat{\mathbf{x}}$?

Problem 2.3 LU-Decomposition

(2.3a) For the lower triangular matrices $\mathbf{L}_{k} \in \mathbb{R}^{n \times n}, k=1, \ldots, n-1$, from [NMI, Eq. (2.5)], prove the following properties:
(i) \mathbf{L}_{k}^{-1} is given by [NMI, Eq. (2.7)].
(ii) $\mathbf{L}=\mathbf{L}_{1}^{-1} \mathbf{L}_{2}^{-1} \cdot \ldots \cdot \mathbf{L}_{n-1}^{-1}$ is given by [NMI, Eq. (2.8)].

Solution:

(i) We write \mathbf{L}_{k} and \mathbf{L}_{k}^{-1} as

$$
\mathbf{L}_{k}=\mathbf{I}-\mathbf{u}_{k} \cdot \mathbf{e}_{k}^{\top}, \quad \text { and } \quad \mathbf{L}_{k}^{-1}=\mathbf{I}+\mathbf{u}_{k} \cdot \mathbf{e}_{k}^{\top},
$$

where $\mathbf{u}_{k}=\left(0, \ldots, 0, l_{k+1, k}, \ldots, l_{n, k}\right)^{\top}$ and \mathbf{e}_{k} is the $k^{\text {th }}$ unit vector. Their product gives
(ii) For the second property, we proceed as before:
(2.3b) Prove that the algorithm for the LU-decomposition without pivoting does not terminate for strictly row diagonally dominant matrices $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Hint: A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be strictly row diagonally dominant if $\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|$ for all $i=1, \ldots, n$.

Solution: Let $\mathbf{A}:=\left(a_{i j}\right)_{i, j=1}^{n} \in \mathbb{C}^{n \times n}$ be strictly row diagonally dominant. We do the first step of the algorithm for the LU-decomposition without pivoting ([NMI, Alg. 2.8]):

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right) \leadsto\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
0 & \tilde{a}_{22} & \ldots & \tilde{a}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & \tilde{a}_{n 2} & \ldots & \tilde{a}_{n n}
\end{array}\right)
$$

We want to show that the resulting matrix $\tilde{\mathbf{A}}=\left(\tilde{a}_{i j}\right)_{i, j=2}^{n}$ is strictly row diagonally dominant.
(2.3c) Given the matrix $\mathrm{A} \in \mathbb{R}^{4,4}$,

$$
\mathbf{A}=\left(\begin{array}{llll}
1 & 0 & 3 & 1 \\
3 & 1 & 2 & 2 \\
6 & 2 & 4 & 3 \\
1 & 3 & 2 & 1
\end{array}\right)
$$

prove that the algorithm for the LU-decomposition without pivoting [NMI, Alg. 2.8] terminates at the 3rd elimination step.

Solution: First note that \mathbf{A} is regular. In view of [NMI, Thm. 2.9], we need to check whether its leading principal minors \mathbf{S}_{k} for $k=1, \ldots, 3$ are regular.

Problem 2.4 Completing the LU-Decomposition

Fill in the template of the Matlab function lrsolve (A, b) from the course website which calculates solutions of $\mathbf{A x}=\mathbf{b}$ by an $\mathbf{L U}$ decomposition and subsequent backward substitution.

Solution: The template is given in Listing 2.1.
Listing 2.1: Solving $\mathbf{A x}=\mathbf{b}$ by an $\mathbf{L U}$ decomposition

```
function x = lrsolve(A, b)
% Given a matrix A and a column vector b, the function
% constructs matrices I, }R\mathrm{ such that
% L is lower triangular
% R is upper triangular
% A = L * R (up to roundoff)
% diag(L) = [I; I; ...; I]
% L, R have minimal generic size
% and returns an approximate solution x to A x = b
% using L, R by backsubstitution
\circ
% Author:
% Date:
```

```
% Check if A is square
assert(all(size (A) == size(A')));
n = size(A, 2);
% Make default vector x and matrices L, R
L = eye(size(A));
R = A;
x = zeros (n, 1);
\circ
% TODO: Compute L, R and C = L\b explicitly
% ...
% Check integrity of the LR decomposition
assert(TestLR(A, L, R));
% and that indeed C = L\b
assert(norm(L*c - b, 'inf') <= 1e-10 * norm(b,'inf'));
\circ . . .
% TODO: Compute x=R\c by backsubstitution
\circ
% Check integrity of the solution
if (norm(A*x-b, 'inf') > 1e-9 * norm(b,'inf'))
    warning('Solution tolerance not met');
end
end
function ok = TestLR(A, L, R)
    ok = false;
    if (~ all(all(L == tril(L))))
        warning('L must be lower triangular');
    elseif (max(abs(diag(L) - 1)))
        warning('L(i,i) must be all ones');
    elseif (~ all(all(R == triu(R))))
        warning('R must be upper triangular');
    elseif ((norm(A-L*R, 'inf') > 1e-8 * norm(A, 'inf')))
        warning('L*R must approximate A');
    else
        ok = true;
    end
end
```

Explicit computation of L, R and $L^{-1} b$:

Compute $R^{-1} c$:

Problem 2.5 Solving A System of Linear Equations with Rounding

In [NMI, Sect. 2.5] it was demonstrated that roundoff can cause instability of Gaussian elimination, unless a suitable pivot policy is implemented. This problem examines this effect in detail for a small example, similar to [NMI, Ex. 2.13] and [NMI, Ex. 2.25]. You are advised to study these examples again before tackling this problem.

Let $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ and $\mathbf{b} \in \mathbb{R}^{2}$ be given by

$$
\mathbf{A}=\left(\begin{array}{cc}
0.005 & 1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\binom{0.5}{1}
$$

We will solve the system $\mathbf{A x}=\mathbf{b}$ for \mathbf{x} using Gaussian elimination in different ways:
(2.5a) Without rounding errors.

Solution:

By backward substitution, we see that the exact solution x has components

$$
\begin{equation*}
x_{2}=\frac{99}{199} \approx 0.497487 \quad \text { and } \quad x_{1}=\frac{1}{5 \cdot 10^{-3}}\left(0.5-\frac{99}{199}\right)=\frac{100}{199} \approx 0.502512 . \tag{2.5.1}
\end{equation*}
$$

(2.5b) Without pivoting, i.e. without interchanging rows or columns, in the floating-point arithmetic $\mathbb{F}(10,3,-10,10)$ up to three significant digits.

Solution:

Now, by backward substitution we obtain the solution x whose components are

$$
\begin{equation*}
x_{2}=0.49748 \ldots \approx 4.97 \cdot 10^{-1}=0.497 \quad \text { and } \quad x_{1}=2 \cdot 10^{2} \cdot(0.5-0.497)=0.6 \tag{2.5.2}
\end{equation*}
$$

(2.5c) With pivoting in the floating-point arithmetic $\mathbb{F}(10,3,-10,10)$.

Solution:

Now, we can again directly compute the solutions and round to the demanded three significant digits to obtain

$$
\begin{equation*}
x_{2}=4.95 \cdot 10^{-1} / 9.95 \cdot 10^{-1}=0.49748 \ldots \approx 0.497 \quad \text { and } \quad x_{1}=1-0.497=0.503 \tag{2.5.4}
\end{equation*}
$$

(2.5d) Compare and comment on the above results.

Remark: Calculations in floating-point arithmetic \mathbb{F} are meant as follows: the results of elementary operations from $\{+,-, \cdot, /\}$ are calculated exactly but rounded to a number in \mathbb{F} before being used for further calculations, see [NMI, Ch. 1].

Solution: Comparing the respective solutions in (2.5.1), (2.5.2) and (2.5.4), we see that there are substantial differences in the calculated values for x_{1} and x_{2}.

Published on March 3, 2016.
To be submitted on March 15, 2016.
Matlab: Submit all files in the online system. Include the files that generate the plots. Label all your plots. Include commands to run your functions. Comment on your results.

References

[NMI] Lecture Notes for the course "Numerische Mathematik I".

Last modified on March 8, 2016

