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For some problems, parts of the solution are already given. Fill in the gaps and complete the
proofs where you see a red band at the left margin.
Introduction. LU-decomposition, matrix-norms, condition.

Problem 3.1 Matrix Norms
(3.1a) For A ∈ Rn×n let ρ(A) := max1≤i≤n |λi| be the spectral radius of A (i.e. the maximum
of the absolute value of all eigenvalues of A). Is ρ a norm? Prove your claim.

Solution:

(3.1b) Define submultiplicativity of a matrix norm ‖·‖M . Moreover, define compatibility of a
matrix norm ‖·‖M with vector norms ‖·‖V , ‖·‖W .

HINT: See [NMI, Sect. 0.7].

Solution: A matrix norm ‖·‖M : Cm×n → R is submultiplicative if for all A ∈ Ca×b and
B ∈ Cb×c, we have

A matrix norm ‖·‖M on Cm×n is compatible with vector norms ‖·‖V and ‖·‖W on Cn and Cm if

(3.1c) Show that the Frobenius norm ‖·‖F on Cm×n is compatible with the vector norm ‖·‖2.

Solution: For A ∈ Cm×n, the Frobenius norm is given by

‖A‖F =

( m∑
i=1

n∑
j=1

|aij|2
)1/2

.

Consequently, we have

‖Ax‖22 =
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(3.1d) Let I ∈ Rn×n be the identity matrix and let F ∈ Rn×n be a matrix such that ‖F‖M < 1
for a submultiplicative matrix norm ‖·‖M . Show that I + F is invertible and determine a formula
for the inverse (I + F)−1.

Is the condition ‖F‖M < 1 necessary for the existence of the inverse (I + F)−1? If so, state
reasons; if not, provide a necessary and a sufficient condition.

Solution: Define B = −F. Then for all m ∈ N, we have

(I−B)(I + B + B2 + . . .+ Bm) = I−Bm+1

⇐⇒ (I + F)(I− F + F2 − . . .+ (−F)m) = I− (−F)m+1.

(3.1e) Show that for I, F and ‖·‖M as in subproblem (3.1d), we have∥∥(I + F)−1
∥∥
M

6 ‖I‖M − 1 +
1

1− ‖F‖M

if the inverse exists.
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Solution: If the inverse matrix (I + F)−1 exists, we can use the Neumann series, the triangle
inequality and submultiplicativity to get:

(3.1f) Let λ ∈ C be an eigenvalue with eigenvector x ∈ Cn of A ∈ Cn×n such that Ax = λx.
Using the decomposition A = D + U, D = diag(A), show that there exists an i ∈ {1, . . . , n}
such that

|λ− aii| 6
n∑

j=1,j 6=i

|aij|.

This is known as the Gershgorin circle theorem.

Solution: As a start, we decompose A into D+U as indicated in the problem statement, which
results in

Ax = λx ⇐⇒ (D + U)x = λx ⇐⇒ (λI−D)x = Ux.

Now choose i such that |xi| = maxj∈{1,...,n} |xj|. Then, we have

(3.1g) Let A ∈ Rm×n. First show that ‖QA‖F = ‖A‖F , if Q ∈ Rm×m is orthogonal. Then
show that ‖A‖2F =

∑p
i=1 σi(A)2, where p = min{m,n} and σi(A) is the ith singular value of A.

Solution:
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(3.1h) Consider the matrix

A :=
2

7

(
3 −1
1 3

)
.

Compute ‖A‖F and ‖A‖p for p ∈ {1, 2,∞}. What can you say about the convergence of the
series

∑
j∈N A

j?

Solution: Recall that ‖A‖2 =
√
λmax(A>A) and

‖A‖1 = max
j=1,...,n

n∑
i=1

|aij|, ‖A‖∞ = max
i=1,...,n

n∑
j=1

|aij|, ‖A‖F =

√√√√ n∑
i,j=1

|aij|2.

Problem 3.2 An Estimate of the Condition Number
In [NMI, Sect. 2.4.3] we conducted a careful analysis of the sensitivity of the solution map for
linear systems of equations with respect to perturbations of the right hand side vector and the
system matrix. Neumann series arguments and norm estimates for inverses were important tools.
This problem will revisit them.

Let A,∆A ∈ Cn×n be matrices such that A is regular. Prove the following properties:

(3.2a) If ‖∆A‖2‖A−1‖2 < 1, then A + ∆A is regular.

Solution: The 2-norms for vectors and matrices are compatible, we have

‖x‖2 =
∥∥A−1Ax

∥∥
2
6
∥∥A−1∥∥

2

∥∥Ax
∥∥
2
. (3.2.1)

Moreover, by the triangle inequality,

‖Ax‖2 = ‖−∆Ax + Ax + ∆Ax‖2 6 ‖∆Ax‖2 + ‖(A + ∆A)x‖2. (3.2.2)
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(3.2b) If B ∈ Cn×n is singular, then 1 6 ‖A−1‖2‖A−B‖2.

Solution:

(3.2c) For the condition number in the 2-norm, namely κ2(A) := ‖A‖2‖A−1‖2, we have

κ2(A)−1 6 inf

{
‖A−B‖2
‖A‖2

∣∣∣∣B ∈ Cn×n singular
}
.

Solution: Using the result from the subproblem (3.2b), we get
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Problem 3.3 Complexity of Pivoting Strategies
(3.3a) Determine the exact number of comparisons in the LU decomposition with column-wise
pivoting ([NMI, Alg. 2.28]).

Solution: In the kth execution of the loop, we have to find the absolute maximum of all elements
a
(k−1)
ik with i ∈ {k, . . . , n}, i. e. the maximum of n− k + 1 elements. To do that, we need n− k

comparisons, so the total number of comparisons is

(3.3b) Determine the exact number of comparisons in the LU decomposition with complete
pivoting (Full Pivoting Remark at the end of [NMI, Ch. 2.5]).

Solution:

(3.3c) Determine the costs of the Cholesky decomposition in [NMI, Alg. 2.37] assuming that
floating point operations all have unit costs of 1.

Solution: We first calculate the costs c1 for
(
aij −

∑i−1
k=1 rkirkj

)
/rii in the inner loop and get

The costs c2 for
(
ajj −

∑j−1
k=1 r

2
kj

)1/2 in the outer loop are given by
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Inserting these into sums representing the inner and the outer loop, respectively, the result is

Problem 3.4 Gaussian Elimination with Pivoting for Structured Sparse Lin-
ear System

If the coefficient matrix of an n × n linear system of equations has special properties, Gaussian
elimination can often be carried out with a computational effort that is much lower that the 2

3
n3 +

O(n2) as counted in [NMI, Sect. 2.2]. In particular, we can usually benefit from sparsity of the
matrix, that is, the property that only O(n) of its entries do not vanish. We saw this in the case of
banded matrices in [NMI, Sect. 2.8] and in this problem we will come across banded matrices in
disguise.

We consider a block partitioned linear system of equations

Ax = b , A :=

(
D1 C
C D2

)
∈ R2n×2n , (3.4.1)

where all the n× n-matrices D1, D2, and C are diagonal. Hence, the matrix A can be described
through three n-vectors d1, c, and d2, which provide the diagonals of the matrix blocks. These
vectors will be passed as arguments d1, c, and d2 to the MATLAB codes below.

(3.4a) Write an efficient MATLAB function function y = multA(d1,c,d2,x) that re-
turns y := Ax in the column vector y. The argument x passes a column vector x ∈ R2n.

(3.4b) Count the number of elementary floating point operations for a call to multA as you
have implemented it in sub-problem (3.4a).

(3.4c) Assuming that the LU-decomposition of A exists, compute the matrices L and U of the
factorization in Equation 3.4.1.

(3.4d) Write an efficient MATLAB function

function x = solveA(d1,c,d2,b)

that solves Ax = b with Gaussian elimination with partial pivoting (see [NMI, Sect. 2.5]). The
MATLAB \-operator must not be used.

HINT: Test your code with arguments d1 = (1:n)’, d2 = -d1, c = ones(n,1), b =
[d1;d1]. Compare with reference solution obtained in MATLAB by x = A \ b.

(3.4e) Analyze the asymptotic computational effort of your implementation of solveA in
terms of the problem size parameter n→∞?
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(3.4f) Runtime measurements in MATLAB can be carried out by means of the commands tic
and toc. Please study their documentation (type “help tic” in MATLAB to view the docu-
mentation).

(3.4g) Determine the asymptotic complexity of the algorithm solveA in a numerical experi-
ment using the MATLAB routines tic and toc. As test case use d1 = (1:n)’, d2 = -d1,
c = ones(n,1), b = [d1;d1] for n = 22, . . . , 212. Create a suitable plot of the runtime
versus n that allows to read off the asymptotic complexity.

(3.4h) In the previous subproblem you found the asymptotic complexity of the algorithm. Write
down the asymptotic behaviour of the computational time as the dimension n tends to infinity
using the Landau notation. Numerically estimate the constant occuring in the Landau notation
(with time measured in seconds on your computer).

(3.4i) Find a permutation matrix P ∈ Rn×n such that PAP> becomes a banded matrix (see
[NMI, Def. 2.40]) with bandwidth 3.

Problem 3.5 Cramer’s Rule vs. Gaussian Elimination
Define

A(φ) :=

(
1√
2

cosφ
1√
2

sinφ

)
, b(φ) = A(φ)

(
1
1

)
The 2× 2 linear system of equations A(φ)x = b(φ) with exact solution x = (x1 x2)

> = (1 1)>

can be solved in two ways:

1. You may use Gaussian elimination employing the \-operator in MATLAB.

2. You may use Cramer’s rule, that is xi = det(Ai)/ det(A) where Ai is obtained by replac-
ing the i-th column of A by the vector b. For the 2× 2 system Ax = b, one has

x1 =
b1a22 − b2a12
a11a22 − a21a12

, x2 =
a11b2 − a21b1
a11a22 − a21a12

. (3.5.1)

(3.5a) Implement both solution strategies in MATLAB in order to obtain numerical solutions
x̃(φ) (affected by roundoff) to A(φ)x = b(φ) for φ = π/4− 10−9 : 10−11 : π/4 + 10−9. Plot in
a suitable scale the condition number of A(φ) in the 2-norm, the relative residual

‖b(φ)−A(φ)x̃(φ)‖2
‖b(φ)‖2

as function of φ for the two approaches and the relative (forward) error

‖x̃(φ)− x‖2
‖x‖2

vs. the function φ for both strategies.

Problem Sheet 3 Page 8 Problem 3.5



(3.5b) Write down what you would say, if you had to step in front of the class and explain the
observations made in (3.5a). Which solution strategy should be preferred?

Published on March 9, 2016.
To be submitted on March 22, 2016.
MATLAB: Submit all file in the online system. Include the files that generate the
plots. Label all your plots. Include commands to run your functions. Comment
on your results.
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