Prof. Ch. Schwab Spring Term 2016
B. Fitzpatrick . .
J. Zech Numerische Mathematik I

ETH Ziirich
D-MATH
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Introduction. This problem sheet is devoted to the LU-decomposition of matrices with particular
structure or properties. The basics of polynomial interpolation are also introduced.

Problem 4.1 LU-Decomposition of Band Matrices

(4.1a) Write a MATLAB function calcLUDecBand (A, p, gq) that calculates an LU decom-

position for band matrices A with right half-bandwidth p and left half-bandwidth ¢ without piv-
oting ([NMI, Alg 2.42]).

Write a MATLAB function forwardsub (A, g, b) that solves Ax = b by forward substitution
for lower band matrices A with ones on the diagonal and upper half-bandwidth p = 0. Write an-
other MATLAB function backwardsub (A, p, b) thatsolves Ax = b by backward substitution
for upper band matrices A with lower half-bandwidth ¢ = 0.

In all functions, make sure you take advantage of the band structure of the matrix.

(4.1b) Test your functions on the problem Ax = b, where

10715 1 1
A= 1 2 e R0 and b = 1 e RY.
Calculate x and the residuum ||r||, = |[b — Ax||,. What can you say about the size of the

residuum?

(4.1c) Write a script that measures the runtime of the LU decomposition from subproblem (4.1a)
and compares it to the LU decomposition implemented in MATLAB. As an input, use A from
subproblem (4.1b) for sizes n = 27 with j € {5,6,...,12} and determine the runtime as an
average of ten iterations.

Plot the results in a log-log diagram. Check whether or not the dependence of the runtime on n
goes along with [NMI, Tab. 2.2]!

HINT: Using the MATLAB functions tic and toc, you can measure the runtime of a code
segment.

Listing 4.1: Testcalls for Problem 4.1

1 | ¥ Construct A, b
2 |n = 10;
3 |A = diag (2+ones(n, 1)) + diag(ones(n-1,1),1) + diag (ones(n-1,1),-1);
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A(l,1) = 1.0e-15;
b = ones(n,1);

% LU decomposition

result = calcLUDecBand(A,1,1);

L = eye(n) + tril (result,-1);

U = triu (result);

% solve the system, calculate the residuum
= forwardsub (L, 1,b);

backwardsub (U, 1,vy)

norm (b — Ax*x)

B XK
Il

Listing 4.2: Output for Testcalls for Problem 4.1

>> test_call

-0.4441
1.0000
-0.4444
0.8889
-0.3333
0.7778
-0.2222
0.6667
-0.1111
0.5556

0.1115

Problem 4.2 Cholesky decomposition

Let 0 # A € R™ " be a symmetric matrix.

(4.2a) Give the definition of positive definiteness for the matrix A.

Solution:

(4.2b) Show that, if A is positive definite, then a;; > 0 forall 1 < < n.

Does the reverse implication hold as well? Justify your answer!

Solution: Since x" Ax > 0 must hold for all x € R™\ {0}, it also holds for the canonical vectors

e;=(0,...,0,1,0,...,0)", which have the 1 on the i position.
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(4.2c) Let A now be positive definite as well. Define the Cholesky-decomposition of A and
formulate a sufficient condition that the decomposition can be done.

Solution:

(4.2d) Write down an algorithm for the Cholesky-decomposition with pivoting, for which the
element of the remaining submatrix with the largest absolute value is brought into the pivot posi-
tion at each step.

What is the matrix-form of this pivoting Cholesky-decomposition?

Solution: Since A and the submatrices of all steps are SPD, the largest element is always on the
diagonal (compare with [NMI, Thm. 2.35] part 3). The pivoting strategy thus only has to search
the diagonal and bring the row/column of the largest element to the front.

The algorithm for the Cholesky-decomposition with pivoting:
Input: SPD Matrix A € R™*".
Output: Cholesky-factor R and permutation matrix P, such that
PAP" =R'R.
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(4.2e) Show that a Cholesky-algorithm with full pivoting for semi-definite A with r = rank(A) <
n aborts after exactly r steps in exact arithmetic.

Solution:

See Lemma 1 of H. Harbrecht, M. Peters, R. Schneider: On the low-rank approximation by the
pivoted Cholesky decomposition, 2010, as well as the following.

For A positive semi-definite, all eigenvalues satisfy \; > 0,7 = 1,...,n. For the trace of the
matrix, this implies tr(A) = Y | A; > 0. Therefore, the existence of at least one positive
diagonal entry a > 0 is guaranteed. Through the application of a symmetric permutation matrix,
this entry can always be brought into the (1, 1)-position.
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Problem 4.3 LDL' decomposition

From the proof on the existence of the Cholesky decomposition ([NMI, Thm. 2.36]), it follows
that for specific symmetric matrices A, there is a decomposition A = LDL" where L is a lower
triangular matrix with entries ones on the diagonal and D is a real-valued diagonal matrix.

(4.3a) Modify [NMI, Alg. 2.37] such that it calculates the LDL" decomposition and imple-
ment this algorithm in a MATLAB function calcLDLDecomp (. ). The function return value is
supposed be a matrix such that the upper right half contains the corresponding entries of L™ and
the diagonal contains the corresponding elements of D.

Check your algorithm on the example

Does the LDL " decomposition exist for symmetric negative definite matrices or for indefinite
matrices, i. e. does the modified algorithm compute a LDL" decomposition for those matrices?
If not, give a counterexample.

Solution:

(4.3b) Using the functions tic and toc that are provided by MATLAB to measure time,
determine the execution time ¢,, of your function calcLDLDecomp (.) for the input A =
gallery (‘moler’,n) and n € {100,200, ...,1000}. Plot the measured times in a double
logarithmic diagram and postulate a law for the execution time of the form ¢,, = ¢ - n®.

Solution:

In the double logarithmic plot, the data points are roughly on a straight line, implying that we
indeed have a law of the form ¢,, = c¢- n®. For a first approximation, we just take the two outmost
points, i.e. n = 100 and n = 1000 with times ¢; and ¢y and solve the system for the constants ¢
and a:
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(4.3c) Following your algorithm in subproblem (4.3a), determine the costs w,, for computing
the LDLT decomposition of a n x n-matrix. Therefore, assume all floating point operations cost
1 time unit. Compare the result to the postulated law in subproblem (4.3b).

Solution: Setting the costs for one elementary operation to 1 time unit, we can count the costs
in the code for subproblem (4.3a). Note that there are two for-loops, each represented by one of
the sums. We get

n 7j—1

S~ — \~—~—

outside loops J=2 \ /i x % —and / L x * -

w,= n+1 + (t—1)+2i=3)+ 2 |+(UG-1D+(25-3)+ 1
—— ~~ —— —— A

(4.3d) The inertia of a matrix A is a set of nonnegative integers (m, z, p) where m, z, and p are
the number of negative, zero, and positive eigenvalues of A, respectively.

Prove Sylvester’s Law of Inertia which states that if A € R"*" is symmetric and X € R"*" is
nonsingular, then A and X7 AX have the same inertia.
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HINT: For a symmetric matrix A € R™*" the k*" largest eigenvalue of A is given by

TA
A(A) = max  min Y 2
dim(S)=k 0#yes yly

Solution: Suppose for some k& we have that A\;(A) > 0 and define the subspace Sy C R" by
So=span{X 'qi,..., X 'q}, @ #0

where Ag; = \i(A)g;andi = 1,... k.

we have that
y (XTAX)y y"(X"X)y
yI(XTX)y  yly

M(XTAX) > min{

y€So

} > Ae(A)o, (X)2

(4.3e) Suppose A has been reduced to some tridiagonal matrix T that has the same eigenvalues
as A through the application of some eigenvalue preserving transformation. We can find the
inertia of A by calculating the inertia of T instead. This leads to a performance enhancement
as operations such as Gaussian elimination, forward substitution, and back substitution are more

efficient for banded matrices such as the tridiagonal T.
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Write an efficient algorithm inertia.m which takes as input the matrix 7' below, applies
Sylvester’s Law of Inertia, and outputs the inertia (m, z, p) where m, z, and p are as described
above.

-2 -1 0 0
-1 0 =2 0
0 -2 —-15 -8
o 0 -8 9

Problem 4.4 Schur Complement

The so-called Schur complement plays a central role in many algorithms of numerical linear
algebra. It is defined as follows. Suppose A, B, C, D are respectively p X p-, p X ¢-, ¢ X p- and
q X g-matrices, and that A is invertible. Then the Schur complement of the block A of the matrix

w2 B

is the ¢ x g-matrix S = D — CA~'B. In this problem assume that M € R(®+9)*(+9) j5 symmetric
positive definite.

(4.4a) Let S € R?? be symmetric and positive definite, and b € R?. Show that the vector
x* := S~!b is the unique minimizer of the function

f:{Rp - R _ (4.4.1)

X — %XTSX—bTX

HINT: Find an equivalent expression for f(x)— f(x*) that is guaranteed to be positive for x # x*.
To that end remember what it means that S is positive definite (SPD).

Solution: We want to show that f(x) — f(x*) > 0 for all x # x* := S~ !b.

fx)— f(x") = %XTSX ~b'x— f(x*) = %XTSX — (x*)TSx — f(x*) =
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(4.4b) Prove that

T
T . X X
Sy = M R?.
sy =g (7) (). v
HINT: The expression, of which we take the minimum, is structurally close to f from (4.4.1).
Hence, the result of (4.4a) can be used.

Solution: Define

X

T
y) M (;) =xTAx + y'Cx + x'By + y'Dy.

e = (

Then Vf(x) = 2xTA+yTC+y B?, and V f(xy) = 0 and C = B” imply that x, = —A~'By.
By evaluating f at x,, we conclude that

(4.4c) Prove that S is symmetric positive definite.

Solution: From the definition of S one has ST = D7 — BTA~-TC”. Since the matrix M is
symmetric by assumption, DT = D, CT = B, B = Cand AT = A.

(4.4d) Prove that
:‘ig(S) < Kg(M).

Solution: Since M and S are positive definite, the result in ?? can be applied to || M|, and ||S|,.
Note that, due to subproblem (4.4b)

X T X X T X
'S (Y) M<Y> (Y) M(Y)
IS[l, = sup T < supsup ~L— L < gup ~L AL M|

O 000
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Now writing the 2-condition number of M as

Published on March 16, 2016.
To be submitted on April 5, 2016.

MATLAB: Submit all file in the online system. Include the files that generate the
plots. Label all your plots. Include commands to run your functions. Comment
on your results.
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