Homework Problem Sheet 4

Introduction. This problem sheet is devoted to the LU-decomposition of matrices with particular structure or properties. The basics of polynomial interpolation are also introduced.

Problem 4.1 LU-Decomposition of Band Matrices

(4.1a) Write a Matlab function calcLUDecBand (A, p, q) that calculates an LU decomposition for band matrices A with right half-bandwidth p and left half-bandwidth q without pivoting ([NMI, Alg 2.42]).

Write a MATLAB function forwardsub ($\mathrm{A}, \mathrm{q}, \mathrm{b}$) that solves $\mathbf{A x}=\mathbf{b}$ by forward substitution for lower band matrices \mathbf{A} with ones on the diagonal and upper half-bandwidth $p=0$. Write another Matlab function backwardsub ($\mathrm{A}, \mathrm{p}, \mathrm{b}$) that solves $\mathbf{A x}=\mathbf{b}$ by backward substitution for upper band matrices A with lower half-bandwidth $q=0$.
In all functions, make sure you take advantage of the band structure of the matrix.
(4.1b) Test your functions on the problem $\mathbf{A x}=\mathbf{b}$, where

$$
\mathbf{A}=\left(\begin{array}{cccc}
10^{-15} & 1 & & \\
1 & 2 & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & 2
\end{array}\right) \in \mathbb{R}^{10 \times 10} \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) \in \mathbb{R}^{10}
$$

Calculate \mathbf{x} and the residuum $\|\mathbf{r}\|_{2}=\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}$. What can you say about the size of the residuum?
(4.1c) Write a script that measures the runtime of the LU decomposition from subproblem (4.1a) and compares it to the $\mathbf{L U}$ decomposition implemented in Matlab. As an input, use \mathbf{A} from subproblem (4.1b) for sizes $n=2^{j}$ with $j \in\{5,6, \ldots, 12\}$ and determine the runtime as an average of ten iterations.

Plot the results in a log-log diagram. Check whether or not the dependence of the runtime on n goes along with [NMI, Tab. 2.2]!
Hint: Using the Matlab functions tic and toc, you can measure the runtime of a code segment.

Listing 4.1: Testcalls for Problem 4.1

```
% Construct A, b
n = 10;
A = diag (2*ones (n,1)) + diag(ones (n-1,1),1) + diag(ones(n-1,1),-1);
```

```
A(1,1) = 1.0e-15;
b = ones(n,1);
% LU decomposition
result = calcLUDecBand(A,1,1);
L = eye(n) + tril(result, -1);
U = triu(result);
% solve the system, calculate the residuum
y = forwardsub (L, 1,b);
x = backwardsub (U,1,Y)
r norm(b - A*x)
```

Listing 4.2: Output for Testcalls for Problem 4.1

```
>> test_call
x =
    -0.4441
        1.0000
    -0.4444
        0.8889
    -0.3333
        0.7778
    -0.2222
        0.6667
        -0.1111
            0.5556
r =
    0.1115
```


Problem 4.2 Cholesky decomposition

Let $\mathbf{0} \neq \mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
(4.2a) Give the definition of positive definiteness for the matrix A.

Solution:
(4.2b) Show that, if \mathbf{A} is positive definite, then $a_{i i}>0$ for all $1 \leq i \leq n$.

Does the reverse implication hold as well? Justify your answer!
Solution: Since $\mathbf{x}^{\top} \mathbf{A x}>0$ must hold for all $\mathbf{x} \in \mathbb{R}^{n} \backslash\{0\}$, it also holds for the canonical vectors $\mathbf{e}_{i}=(0, \ldots, 0,1,0, \ldots, 0)^{\top}$, which have the 1 on the $i^{\text {th }}$ position.
(4.2c) Let A now be positive definite as well. Define the Cholesky-decomposition of A and formulate a sufficient condition that the decomposition can be done.

Solution:

(4.2d) Write down an algorithm for the Cholesky-decomposition with pivoting, for which the element of the remaining submatrix with the largest absolute value is brought into the pivot position at each step.
What is the matrix-form of this pivoting Cholesky-decomposition?
Solution: Since A and the submatrices of all steps are SPD, the largest element is always on the diagonal (compare with [NMI, Thm. 2.35] part 3). The pivoting strategy thus only has to search the diagonal and bring the row/column of the largest element to the front.

The algorithm for the Cholesky-decomposition with pivoting:
Input: SPD Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.
Output: Cholesky-factor \mathbf{R} and permutation matrix \mathbf{P}, such that $\mathbf{P A P}^{\top}=\mathbf{R}^{\top} \mathbf{R}$.
(4.2e) Show that a Cholesky-algorithm with full pivoting for semi-definite \mathbf{A} with $r=\operatorname{rank}(\mathbf{A})<$ n aborts after exactly r steps in exact arithmetic.

Solution:

See Lemma 1 of H. Harbrecht, M. Peters, R. Schneider: On the low-rank approximation by the pivoted Cholesky decomposition, 2010, as well as the following.
For A positive semi-definite, all eigenvalues satisfy $\lambda_{i} \geq 0, i=1, \ldots, n$. For the trace of the matrix, this implies $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}>0$. Therefore, the existence of at least one positive diagonal entry $a>0$ is guaranteed. Through the application of a symmetric permutation matrix, this entry can always be brought into the (1,1)-position.

Problem 4.3 LDL^{\top} decomposition

From the proof on the existence of the Cholesky decomposition ([NMI, Thm. 2.36]), it follows that for specific symmetric matrices \mathbf{A}, there is a decomposition $\mathbf{A}=\mathbf{L D L}^{\top}$ where \mathbf{L} is a lower triangular matrix with entries ones on the diagonal and \mathbf{D} is a real-valued diagonal matrix.
(4.3a) Modify [NMI, Alg. 2.37] such that it calculates the LDL^{\top} decomposition and implement this algorithm in a MATLAB function calcLDLDecomp (.). The function return value is supposed be a matrix such that the upper right half contains the corresponding entries of \mathbf{L}^{\top} and the diagonal contains the corresponding elements of \mathbf{D}.

Check your algorithm on the example

$$
\mathbf{M}=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -2
\end{array}\right)
$$

Does the $\mathbf{L D L}^{\top}$ decomposition exist for symmetric negative definite matrices or for indefinite matrices, i. e. does the modified algorithm compute a LDL^{\top} decomposition for those matrices? If not, give a counterexample.

Solution:

(4.3b) Using the functions $t i c$ and toc that are provided by Matlab to measure time, determine the execution time t_{n} of your function calcLDLDecomp (.) for the input $\mathrm{A}=$ gallery ('moler', n) and $n \in\{100,200, \ldots, 1000\}$. Plot the measured times in a double logarithmic diagram and postulate a law for the execution time of the form $t_{n}=c \cdot n^{a}$.

Solution:

In the double logarithmic plot, the data points are roughly on a straight line, implying that we indeed have a law of the form $t_{n}=c \cdot n^{a}$. For a first approximation, we just take the two outmost points, i. e. $n=100$ and $n=1000$ with times t_{1} and t_{10} and solve the system for the constants c and a :
(4.3c) Following your algorithm in subproblem (4.3a), determine the costs w_{n} for computing the $\mathbf{L D L}^{\top}$ decomposition of a $n \times n$-matrix. Therefore, assume all floating point operations cost 1 time unit. Compare the result to the postulated law in subproblem (4.3b).
Solution: Setting the costs for one elementary operation to 1 time unit, we can count the costs in the code for subproblem (4.3a). Note that there are two for-loops, each represented by one of the sums. We get

$$
w_{n}=\underbrace{n+1}_{\text {outside loops }}+\sum_{j=2}^{n}(\sum_{i=2}^{j-1}(\underbrace{(i-1)}_{\cdot *}+\underbrace{(2 i-3)}_{*}+\underbrace{2}_{- \text {and } / 2})+\underbrace{(j-1)}_{\cdot *}+\underbrace{(2 j-3)}_{*}+\underbrace{1}_{-})=
$$

(4.3d) The inertia of a matrix \mathbf{A} is a set of nonnegative integers (m, z, p) where m, z, and p are the number of negative, zero, and positive eigenvalues of \mathbf{A}, respectively.
Prove Sylvester's Law of Inertia which states that if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric and $\mathbf{X} \in \mathbb{R}^{n \times n}$ is nonsingular, then \mathbf{A} and $\mathbf{X}^{T} \mathbf{A X}$ have the same inertia.

Hint: For a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ the $k^{t h}$ largest eigenvalue of \mathbf{A} is given by

$$
\lambda_{k}(\mathbf{A})=\max _{\operatorname{dim}(S)=k} \min _{0 \neq \mathbf{y} \in S} \frac{\mathbf{y}^{T} \mathbf{A} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}}
$$

Solution: Suppose for some k we have that $\lambda_{k}(\mathbf{A})>0$ and define the subspace $S_{0} \subseteq \mathbb{R}^{n}$ by

$$
S_{0}=\operatorname{span}\left\{\mathbf{X}^{-1} q_{1}, \ldots, \mathbf{X}^{-1} q_{k}\right\}, \quad q_{i} \neq 0
$$

where $\mathbf{A} q_{i}=\lambda_{i}(\mathbf{A}) q_{i}$ and $i=1, \ldots, k$.
we have that

$$
\lambda_{k}\left(\mathbf{X}^{T} \mathbf{A X}\right) \geq \min _{y \in S_{0}}\left\{\frac{\mathbf{y}^{T}\left(\mathbf{X}^{T} \mathbf{A X}\right) \mathbf{y}}{\mathbf{y}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right) \mathbf{y}} \frac{\mathbf{y}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right) \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}}\right\} \geq \lambda_{k}(\mathbf{A}) \sigma_{n}(\mathbf{X})^{2} .
$$

(4.3e) Suppose \mathbf{A} has been reduced to some tridiagonal matrix \mathbf{T} that has the same eigenvalues as A through the application of some eigenvalue preserving transformation. We can find the inertia of \mathbf{A} by calculating the inertia of \mathbf{T} instead. This leads to a performance enhancement as operations such as Gaussian elimination, forward substitution, and back substitution are more efficient for banded matrices such as the tridiagonal \mathbf{T}.

Write an efficient algorithm inertia.m which takes as input the matrix T below, applies Sylvester's Law of Inertia, and outputs the inertia (m, z, p) where m, z, and p are as described above.

$$
\mathbf{T}=\left(\begin{array}{cccc}
-2 & -1 & 0 & 0 \\
-1 & 0 & -2 & 0 \\
0 & -2 & -15 & -8 \\
0 & 0 & -8 & 9
\end{array}\right)
$$

Problem 4.4 Schur Complement

The so-called Schur complement plays a central role in many algorithms of numerical linear algebra. It is defined as follows. Suppose $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are respectively $p \times p-, p \times q-, q \times p$ - and $q \times q$-matrices, and that \mathbf{A} is invertible. Then the Schur complement of the block \mathbf{A} of the matrix

$$
\mathrm{M}:=\left(\begin{array}{ll}
\mathrm{A} & \mathrm{~B} \\
\mathrm{C} & \mathrm{D}
\end{array}\right)
$$

is the $q \times q$-matrix $\mathbf{S}=\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}$. In this problem assume that $\mathbf{M} \in \mathbb{R}^{(p+q) \times(p+q)}$ is symmetric positive definite.
(4.4a) Let $\mathrm{S} \in \mathbb{R}^{q \times q}$ be symmetric and positive definite, and $\mathrm{b} \in \mathbb{R}^{q}$. Show that the vector $\mathrm{x}^{*}:=\mathrm{S}^{-1} \mathrm{~b}$ is the unique minimizer of the function

$$
f:\left\{\begin{align*}
\mathbb{R}^{p} & \rightarrow \mathbb{R} \tag{4.4.1}\\
\mathbf{x} & \rightarrow \frac{1}{2} \mathbf{x}^{\top} \mathbf{S} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}
\end{align*}\right.
$$

Hint: Find an equivalent expression for $f(\mathbf{x})-f\left(\mathbf{x}^{*}\right)$ that is guaranteed to be positive for $\mathbf{x} \neq \mathbf{x}^{*}$. To that end remember what it means that S is positive definite (SPD).

Solution: We want to show that $f(\mathbf{x})-f\left(\mathbf{x}^{*}\right)>0$ for all $\mathbf{x} \neq \mathbf{x}^{*}:=\mathbf{S}^{-1} \mathbf{b}$.

$$
f(\mathbf{x})-f\left(\mathbf{x}^{*}\right)=\frac{1}{2} \mathbf{x}^{\top} \mathbf{S} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}-f\left(\mathbf{x}^{*}\right)=\frac{1}{2} \mathbf{x}^{\top} \mathbf{S} \mathbf{x}-\left(\mathbf{x}^{*}\right)^{\top} \mathbf{S} \mathbf{x}-f\left(\mathbf{x}^{*}\right)=
$$

(4.4b) Prove that

$$
\mathbf{y}^{T} \mathbf{S} \mathbf{y}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\binom{\mathbf{x}}{\mathbf{y}}^{T} \mathbf{M}\binom{\mathbf{x}}{\mathbf{y}}, \quad \mathbf{y} \in \mathbb{R}^{q}
$$

Hint: The expression, of which we take the minimum, is structurally close to f from (4.4.1). Hence, the result of (4.4a) can be used.

Solution: Define

$$
f(\mathbf{x})=\binom{\mathbf{x}}{\mathbf{y}}^{T} \mathbf{M}\binom{\mathbf{x}}{\mathbf{y}}=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{y}^{T} \mathbf{C} \mathbf{x}+\mathbf{x}^{T} \mathbf{B} \mathbf{y}+\mathbf{y}^{T} \mathbf{D} \mathbf{y}
$$

Then $\nabla f(\mathbf{x})=2 \mathbf{x}^{T} \mathbf{A}+\mathbf{y}^{T} \mathbf{C}+\mathbf{y}^{T} \mathbf{B}^{T}$, and $\nabla f\left(\mathbf{x}_{0}\right)=0$ and $\mathbf{C}=\mathbf{B}^{T}$ imply that $\mathbf{x}_{0}=-\mathbf{A}^{-1} \mathbf{B y}$. By evaluating f at \mathbf{x}_{0}, we conclude that
(4.4c) Prove that S is symmetric positive definite.

Solution: From the definition of \mathbf{S} one has $\mathbf{S}^{T}=\mathbf{D}^{T}-\mathbf{B}^{T} \mathbf{A}^{-T} \mathbf{C}^{T}$. Since the matrix \mathbf{M} is symmetric by assumption, $\mathbf{D}^{T}=\mathbf{D}, \mathbf{C}^{T}=\mathbf{B}, \mathbf{B}^{T}=\mathbf{C}$ and $\mathbf{A}^{T}=\mathbf{A}$.
(4.4d) Prove that

$$
\kappa_{2}(\mathbf{S}) \leq \kappa_{2}(\mathbf{M})
$$

Solution: Since \mathbf{M} and \mathbf{S} are positive definite, the result in ?? can be applied to $\|\mathbf{M}\|_{2}$ and $\|\mathbf{S}\|_{2}$. Note that, due to subproblem (4.4b)

$$
\|\mathbf{S}\|_{2}=\sup _{\mathbf{y} \neq 0} \frac{\mathbf{y}^{T} \mathbf{S y}}{\mathbf{y}^{T} \mathbf{y}} \leq \sup _{\mathbf{y} \neq 0} \sup _{\mathbf{x}} \frac{\binom{\mathbf{x}}{\mathbf{y}}^{T} \mathbf{M}\binom{\mathbf{x}}{\mathbf{y}}}{\binom{\mathbf{x}}{\mathbf{y}}^{T}\binom{\mathbf{x}}{\mathbf{y}}} \leq \sup _{\binom{\mathbf{x}}{\mathbf{y}} \neq 0} \frac{\binom{\mathbf{x}}{\mathbf{y}}^{T} \mathbf{M}\binom{\mathbf{x}}{\mathbf{y}}}{\binom{\mathbf{x}}{\mathbf{y}}^{T}\binom{\mathbf{x}}{\mathbf{y}}}=\|\mathbf{M}\|_{2}
$$

Now writing the 2-condition number of M as

Published on March 16, 2016.
To be submitted on April 5, 2016.
Matlab: Submit all file in the online system. Include the files that generate the plots. Label all your plots. Include commands to run your functions. Comment on your results.

References

[NMI] Lecture Notes for the course "Numerische Mathematik I".

