
Prof. Ch. Schwab
B. Fitzpatrick
J. Zech

Spring Term 2016

Numerische Mathematik I
ETH Zürich

D-MATH

Homework Problem Sheet 4

Introduction. This problem sheet is devoted to the LU-decomposition of matrices with particular
structure or properties. The basics of polynomial interpolation are also introduced.

Problem 4.1 LU-Decomposition of Band Matrices
(4.1a) Write a MATLAB function calcLUDecBand(A,p,q) that calculates an LU decom-
position for band matrices A with right half-bandwidth p and left half-bandwidth q without piv-
oting ([NMI, Alg 2.42]).

Write a MATLAB function forwardsub(A,q,b) that solves Ax = b by forward substitution
for lower band matrices A with ones on the diagonal and upper half-bandwidth p = 0. Write an-
other MATLAB function backwardsub(A,p,b) that solves Ax = b by backward substitution
for upper band matrices A with lower half-bandwidth q = 0.

In all functions, make sure you take advantage of the band structure of the matrix.

(4.1b) Test your functions on the problem Ax = b, where

A =


10−15 1

1 2
. . .

. 1
1 2

 ∈ R10×10 and b =


1
1
...
1

 ∈ R10.

Calculate x and the residuum ‖r‖2 = ‖b−Ax‖2. What can you say about the size of the
residuum?

(4.1c) Write a script that measures the runtime of the LU decomposition from subproblem (4.1a)
and compares it to the LU decomposition implemented in MATLAB. As an input, use A from
subproblem (4.1b) for sizes n = 2j with j ∈ {5, 6, . . . , 12} and determine the runtime as an
average of ten iterations.

Plot the results in a log-log diagram. Check whether or not the dependence of the runtime on n
goes along with [NMI, Tab. 2.2]!

HINT: Using the MATLAB functions tic and toc, you can measure the runtime of a code
segment.

Listing 4.1: Testcalls for Problem 4.1
1 % Construct A, b
2 n = 10;
3 A = diag(2*ones(n,1)) + diag(ones(n-1,1),1) + diag(ones(n-1,1),-1);

Problem Sheet 4 Page 1 Problem 4.1

4 A(1,1) = 1.0e-15;
5 b = ones(n,1);
6 % LU decomposition
7 result = calcLUDecBand(A,1,1);
8 L = eye(n) + t r i l (result,-1);
9 U = t r i u(result);

10 % solve the system, calculate the residuum
11 y = forwardsub(L,1,b);
12 x = backwardsub(U,1,y)
13 r = norm(b - A*x)

Listing 4.2: Output for Testcalls for Problem 4.1
1 >> test_call
2

3 x =
4

5 -0.4441
6 1.0000
7 -0.4444
8 0.8889
9 -0.3333

10 0.7778
11 -0.2222
12 0.6667
13 -0.1111
14 0.5556
15

16 r =
17

18 0.1115

Problem 4.2 Cholesky decomposition
Let 0 6= A ∈ Rn×n be a symmetric matrix.

(4.2a) Give the definition of positive definiteness for the matrix A.

Solution:

(4.2b) Show that, if A is positive definite, then aii > 0 for all 1 ≤ i ≤ n.

Does the reverse implication hold as well? Justify your answer!

Solution: Since x>Ax > 0 must hold for all x ∈ Rn\{0}, it also holds for the canonical vectors
ei = (0, . . . , 0, 1, 0, . . . , 0)>, which have the 1 on the ith position.

Problem Sheet 4 Page 2 Problem 4.2

(4.2c) Let A now be positive definite as well. Define the Cholesky-decomposition of A and
formulate a sufficient condition that the decomposition can be done.

Solution:

(4.2d) Write down an algorithm for the Cholesky-decomposition with pivoting, for which the
element of the remaining submatrix with the largest absolute value is brought into the pivot posi-
tion at each step.

What is the matrix-form of this pivoting Cholesky-decomposition?

Solution: Since A and the submatrices of all steps are SPD, the largest element is always on the
diagonal (compare with [NMI, Thm. 2.35] part 3). The pivoting strategy thus only has to search
the diagonal and bring the row/column of the largest element to the front.

The algorithm for the Cholesky-decomposition with pivoting:
Input: SPD Matrix A ∈ Rn×n.
Output: Cholesky-factor R and permutation matrix P, such that

PAP> = R>R.
pij = 1 if i = j, 0 else.
for j = 1, . . . , n do
π̃j = j
for i = j + 1, . . . , n do

if |aii| > |aπ̃j π̃j | then
π̃j = i

end if
end for
swap(a·j, a·π̃j)
swap(aj·, aπ̃j ·)
swap(pj·, pπ̃j ·)
for i = 1, . . . , j − 1 do

rij =

(
aij −

i−1∑
k=1

rkirkj

)
/rii

end for

Problem Sheet 4 Page 3 Problem 4.2

rjj =

(
ajj −

j−1∑
k=1

r2kj

)1/2

end for

(4.2e) Show that a Cholesky-algorithm with full pivoting for semi-definite A with r = rank(A) <
n aborts after exactly r steps in exact arithmetic.

Solution:

See Lemma 1 of H. Harbrecht, M. Peters, R. Schneider: On the low-rank approximation by the
pivoted Cholesky decomposition, 2010, as well as the following.

For A positive semi-definite, all eigenvalues satisfy λi ≥ 0, i = 1, . . . , n. For the trace of the
matrix, this implies tr(A) =

∑n
i=1 λi > 0. Therefore, the existence of at least one positive

diagonal entry a > 0 is guaranteed. Through the application of a symmetric permutation matrix,
this entry can always be brought into the (1, 1)-position.

Problem Sheet 4 Page 4 Problem 4.2

http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=166
http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=166

Problem 4.3 LDL> decomposition
From the proof on the existence of the Cholesky decomposition ([NMI, Thm. 2.36]), it follows
that for specific symmetric matrices A, there is a decomposition A = LDL> where L is a lower
triangular matrix with entries ones on the diagonal and D is a real-valued diagonal matrix.

(4.3a) Modify [NMI, Alg. 2.37] such that it calculates the LDL> decomposition and imple-
ment this algorithm in a MATLAB function calcLDLDecomp(.). The function return value is
supposed be a matrix such that the upper right half contains the corresponding entries of L> and
the diagonal contains the corresponding elements of D.

Check your algorithm on the example

M =

−2 1 0
1 −2 1
0 1 −2

.
Does the LDL> decomposition exist for symmetric negative definite matrices or for indefinite
matrices, i. e. does the modified algorithm compute a LDL> decomposition for those matrices?
If not, give a counterexample.

Solution:

(4.3b) Using the functions tic and toc that are provided by MATLAB to measure time,
determine the execution time tn of your function calcLDLDecomp(.) for the input A =
gallery(’moler’,n) and n ∈ {100, 200, . . . , 1000}. Plot the measured times in a double
logarithmic diagram and postulate a law for the execution time of the form tn = c · na.

Solution:

In the double logarithmic plot, the data points are roughly on a straight line, implying that we
indeed have a law of the form tn = c · na. For a first approximation, we just take the two outmost
points, i. e. n = 100 and n = 1000 with times t1 and t10 and solve the system for the constants c
and a:

Problem Sheet 4 Page 5 Problem 4.3

(4.3c) Following your algorithm in subproblem (4.3a), determine the costs wn for computing
the LDL> decomposition of a n× n-matrix. Therefore, assume all floating point operations cost
1 time unit. Compare the result to the postulated law in subproblem (4.3b).

Solution: Setting the costs for one elementary operation to 1 time unit, we can count the costs
in the code for subproblem (4.3a). Note that there are two for-loops, each represented by one of
the sums. We get

wn = n+ 1︸ ︷︷ ︸
outside loops

+
n∑
j=2

 j−1∑
i=2

(i− 1)︸ ︷︷ ︸
.*

+(2i− 3)︸ ︷︷ ︸
*

+ 2︸︷︷︸
- and /

+ (j − 1)︸ ︷︷ ︸
.*

+(2j − 3)︸ ︷︷ ︸
*

+ 1︸︷︷︸
-

 =

(4.3d) The inertia of a matrix A is a set of nonnegative integers (m, z, p) where m, z, and p are
the number of negative, zero, and positive eigenvalues of A, respectively.

Prove Sylvester’s Law of Inertia which states that if A ∈ Rn×n is symmetric and X ∈ Rn×n is
nonsingular, then A and XTAX have the same inertia.

Problem Sheet 4 Page 6 Problem 4.3

HINT: For a symmetric matrix A ∈ Rn×n the kth largest eigenvalue of A is given by

λk(A) = max
dim(S)=k

min
06=y∈S

yTAy

yTy

Solution: Suppose for some k we have that λk(A) > 0 and define the subspace S0 ⊆ Rn by

S0 = span{X−1q1, . . . ,X−1qk}, qi 6= 0

where Aqi = λi(A)qi and i = 1, . . . , k.

we have that

λk(X
TAX) ≥ min

y∈S0

{
yT (XTAX)y

yT (XTX)y

yT (XTX)y

yTy

}
≥ λk(A)σn(X)2.

(4.3e) Suppose A has been reduced to some tridiagonal matrix T that has the same eigenvalues
as A through the application of some eigenvalue preserving transformation. We can find the
inertia of A by calculating the inertia of T instead. This leads to a performance enhancement
as operations such as Gaussian elimination, forward substitution, and back substitution are more
efficient for banded matrices such as the tridiagonal T.

Problem Sheet 4 Page 7 Problem 4.3

Write an efficient algorithm inertia.m which takes as input the matrix T below, applies
Sylvester’s Law of Inertia, and outputs the inertia (m, z, p) where m, z, and p are as described
above.

T =


−2 −1 0 0
−1 0 −2 0
0 −2 −15 −8
0 0 −8 9


Problem 4.4 Schur Complement
The so-called Schur complement plays a central role in many algorithms of numerical linear
algebra. It is defined as follows. Suppose A, B, C, D are respectively p× p-, p× q-, q × p- and
q× q-matrices, and that A is invertible. Then the Schur complement of the block A of the matrix

M :=

(
A B
C D

)
is the q×q-matrix S = D−CA−1B. In this problem assume that M ∈ R(p+q)×(p+q) is symmetric
positive definite.

(4.4a) Let S ∈ Rq×q be symmetric and positive definite, and b ∈ Rq. Show that the vector
x∗ := S−1b is the unique minimizer of the function

f :

{
Rp → R
x → 1

2
x>Sx− b>x

. (4.4.1)

HINT: Find an equivalent expression for f(x)−f(x∗) that is guaranteed to be positive for x 6= x∗.
To that end remember what it means that S is positive definite (SPD).

Solution: We want to show that f(x)− f(x∗) > 0 for all x 6= x∗ := S−1b.

f(x)− f(x∗) = 1

2
x>Sx− b>x− f(x∗) = 1

2
x>Sx− (x∗)>Sx− f(x∗) =

Problem Sheet 4 Page 8 Problem 4.4

(4.4b) Prove that

yTSy = min
x∈Rp

(
x
y

)T
M

(
x
y

)
, y ∈ Rq .

HINT: The expression, of which we take the minimum, is structurally close to f from (4.4.1).
Hence, the result of (4.4a) can be used.

Solution: Define

f(x) =

(
x
y

)T
M

(
x
y

)
= xTAx+ yTCx+ xTBy + yTDy.

Then∇f(x) = 2xTA+yTC+yTBT , and∇f(x0) = 0 and C = BT imply that x0 = −A−1By.
By evaluating f at x0, we conclude that

(4.4c) Prove that S is symmetric positive definite.

Solution: From the definition of S one has ST = DT − BTA−TCT . Since the matrix M is
symmetric by assumption, DT = D, CT = B, BT = C and AT = A.

(4.4d) Prove that
κ2(S) ≤ κ2(M).

Solution: Since M and S are positive definite, the result in ?? can be applied to ‖M‖2 and ‖S‖2.
Note that, due to subproblem (4.4b)

‖S‖2 = sup
y 6=0

yTSy

yTy
≤ sup

y 6=0
sup
x

(
x
y

)T
M

(
x
y

)
(
x
y

)T(
x
y

) ≤ supx
y

 6=0

(
x
y

)T
M

(
x
y

)
(
x
y

)T(
x
y

) = ‖M‖2.

Problem Sheet 4 Page 9 Problem 4.4

Now writing the 2-condition number of M as

Published on March 16, 2016.
To be submitted on April 5, 2016.
MATLAB: Submit all file in the online system. Include the files that generate the
plots. Label all your plots. Include commands to run your functions. Comment
on your results.

References

[NMI] Lecture Notes for the course “Numerische Mathematik I”.

Last modified on March 18, 2016

Problem Sheet 4 Page 10 References

https://www.math.ethz.ch/~grsam/NumMath1/skript/

	Problem Sheet 4
	4.1 LU-Decomposition of Band Matrices
	4.2 Cholesky decomposition
	4.3 LDL decomposition
	4.4 Schur Complement

