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For some problems, parts of the solution are already given. Fill in the gaps and complete the
proofs where you see a red band at the left margin.
Introduction. Interpolation.

Problem 5.1 Neville’s Algorithm
We want to interpolate the function f(x) =

√
x at supporting points x0 = 1

4
, x1 = 1 and x2 = 4

with a polynomial and evaluate it at x? = 2.

(5.1a) Compute the interpolating polynomial of minimum degree using the barycentric inter-
polation formula. Evaluate the polynomial at x?.

Solution: We first compute the coefficients λi, namely

Inserting those into the barycentric interpolation formula yields

Since there are many calculations needed to get to the result, one does usually not apply the
barycentric interpolation formula. However, an evaluation at x? = 2 gives pn(2) = 68

45
≈ 1.5111.

(5.1b) Evaluate the interpolating polynomial directly at x? using Aitken’s algorithm. Is there a
difference compared to the value from subproblem (5.1a)? If yes, why?

Solution: Neville’s algorithm can be used to evaluate pn directly in x?:
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Problem 5.2 Evaluating the Derivatives of Interpolating Polynomials
This problem is dedicated to fundamental algorithms for polynomial interpolation as discussed
in Section 3.1 of the lecture. We will also learn about some of their extensions and applications.
This problem involves substantial implementation in MATLAB.

(5.2a) Write a MATLAB function

p = AitNevpoleval(x,y,t)

that, using the Aitken-Neville scheme from [NMI, Thm. 3.7], evaluates the polynomial p ∈ Pn

interpolating the data points (xi, yi), i = 0, . . . , n, for pairwise different xi ∈ R and data values
yi ∈ R, in t ∈ R. The data points are passed through the vectors x and y.

Solution: We implement the recursion formula for the Aitken-Neville scheme. The Algorithm
reads:

(5.2b) Write an efficient MATLAB function

dp = dipoleval(x,y,t)

that returns the value p′(t) of the derivative of the polynomial p ∈ Pn interpolating the data points
(xi, yi), i = 0, . . . , n, for pairwise different xi ∈ R and data values yi ∈ R, evaluated at t ∈ R.

HINT: Use the recursion formula for the Aitken-Neville scheme from [NMI, Thm. 3.7] and dif-
ferentiate it.

Solution: Differentiating the recursion formula for the Aitken-Neville scheme, we obtain
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(5.2c) Test the implementation of dipoleval in subproblem (5.2b) by comparing with the
result obtained using simple difference quotients applied to the point values computed in sub-
problem (5.2a) through the routine AitNevpoleval. That is, we approximate

p′
(
1
2
(ti + ti+1)

)
≈ p(ti+1)− p(ti)

ti+1 − ti
.

Use m = n + 1 = 10 interpolation points x = linspace(0,1,m), y = rand(1,m)
and evaluation points t = linspace(0,1,N) for N = 100. Plot the results for the two
implementations.

HINT: You may use the MATLAB command diff.

Problem 5.3 Hermite Interpolation
(5.3a) Let pn ∈ Pn be the interpolating polynomial of degree at most n for the data points
{(xi, yi)}ni=0 ⊂ R2 with xi = xj ⇒ i = j, so in particular, we have pn(xi) = yi for i = 0, . . . , n.
Show that pn is given by

pn(x) =
n∑

i=0

ωn+1(x) · yi
(x− xi) · ω′n+1(xi)

, where ωn+1(x) =
n∏

i=0

(x− xi). (5.3.1)

Solution: We know that the interpolation problem with n + 1 distinct points in the plane has a
unique polynomial solution of degree at most n, so it is sufficient to show that the polynomial pn
given in 5.3.1 is of degree at most n and interpolates the given data points.

Looking at the degrees first, we see that

ωn+1(x)

(x− xi)
=

We now want to prove pn(xj) = yj for all j ∈ {0, . . . , n. Using the product rule, we get the
derivative

ω′n+1(x) =
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(5.3b) Show that the interpolation mapping In : C0([a, b]) → Pn, f 7→ pn on data points
a 6 x0 < x1 < · · · < xn 6 b is a linear map.

Solution: Consider two functions f, g ∈ C0([a, b]) and their interpolating polynomials pn =
In(f) and qn = In(g) in Pn. We want to show that for any α, β ∈ R,

In(αf + βg) = αpn + βqn.

(5.3c) Let x = (xi)
n
i=0 ∈ Rn+1. Computing the interpolating polynomial in the monomial basis

1, x, x2, . . ., one will be confronted with the Vandermonde matrix A ∈ R(n+1)×(n+1) given by
Aij = xji for i, j ∈ {1, . . . , n+ 1}. Show that

detA =
∏

06i<k6n

(xk − xi).

When is the matrix A singular?

Solution:

Problem Sheet 5 Page 4 Problem 5.3



Problem 5.4 Basis of Polynomials for Hermite Interpolation
Let p3 ∈ P3 an interpolating polynomial that interpolates f and its first derivative at double data
points x0 = x1 and x2 = x3 with values f(x0) = y0, f ′(x0) = y′0 and f(x2) = y2, f ′(x2) = y′2.
From the theorem in [NMI, Sect. 3.5], we know that p3 is unique. Determine four polynomials
hi ∈ P3, i = 0, . . . , 3, such that p3 can be written in the form

p3(x) = y0h0(x) + y′0h1(x) + y2h2(x) + y′2h3(x).

Provide a general form for the polynomials hi and sketch the graphs for x0 = 0, x2 = 1.

HINT: Think about conditions that have to hold true for the hi. You can think of this as finding
interpolation conditions for the hi and solving the interpolation problem afterwards.

Problem 5.5 MATLAB: Lebesgue constant for interpolation
We want to study the influence of the interpolation points on the Lebesgue constant and on the
error of the interpolation.

(5.5a) Write a MATLAB function calcLambda(x) that takes the interpolation points as a
vector x = (x0, . . . , xn) and returns an approximation of the Lebesgue constant Λn (see [NMI,
Eq. 3.33]).

(5.5b) Compute an approximation of Λn as a function of n = 1, . . . , 20 for

• equidistant data points in the interval [−1, 1] using linspace(-1,1,n+1),

• with Chebyshev nodes (see [NMI, Thm. 3.41]) as data points in the interval [−1, 1],

and plot it in a single diagram with semilogy. Discuss your results.

(5.5c) Compute the approximate interpolation error ‖f − In[f ]‖∞ for f(x) = (1 + a2x2)−1,
x ∈ [−1, 1] and plot it as a function of n = 1, . . . , 19 for a = 1, 5, 10,

• in a diagram for equidistant data points,
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• in a second diagram using Chebyshev nodes as data points.

In which case does the decrease of the best approximation error infq∈Pn‖f − q‖∞ compensate the
increase of the Lebesgue constant with n? (see [NMI, Thm. 3.19])

Published on April 1, 2016.
To be submitted on April 12, 2016.
MATLAB: Submit all file in the online system. Include the files that generate the
plots. Label all your plots. Include commands to run your functions. Comment
on your results.
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