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Introduction. This problem sheet is devoted to polynomial interpolation.

Problem 6.1 Approximation of the First Derivative by Interpolation
A way to compute an approximation of the derivative of a smooth function which is accessible
through point values only is to interpolate the function first and then compute the derivative of
the interpolant.

(6.1a) Let the polynomial p ∈ P2 interpolate the function f ∈ C4(R) in the data points 0, h and
2h. Use p′(0) as an approximation of f ′(0) by writing it as

p′(0) =
1

2h
(uf(0) + vf(h) + wf(2h)),

for some u, v, w ∈ R. Express u, v, and w in terms of f(0), f(h), and f(2h).

Solution: We determine the coefficients of the interpolating polynomial p2(x) = a0 +a1x+a2x
2

as the solution of the system 1 0 0
1 h h2

1 2h 4h2

a0

a1

a2

 =

 f(0)
f(h)
f(2h)

,

(6.1b) By considering the Taylor expansion of f , show that the asymptotic error for h → 0 is
given by

f ′(0)− p′(0) = cf (3)(0)h2 +O(h3)

for some constant c ∈ R. Calculate c explicitly.

Solution: As f ∈ C4(R), we can write a Taylor expansion of f up to order four and plug in h
and 2h to get

f(h) = f(0) + hf ′(0) +
1

2
h2f ′′(0) +

1

6
h3f (3)(0) +O(h4),
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Problem 6.2 Data Compression by Interpolation
Some data sets have a lot of internal structure, which enables compression, that is, a good ap-
proximate description with a significantly reduced amount of information. In this problem we
will learn about algorithms that use interpolation for data compression. This problem asks for
substantial implementation in MATLAB.

Assume that the following evaluation function is available

v = ipeval(x,y,t),

which takes as arguments the data points (xi, yi), with xi−1 < xi for i = 0, . . . , n − 1 (stored
in the row vectors x and y), and the (sorted) evaluation points t1, . . . , tN , x0 ≤ ti ≤ xn and
ti−1 ≤ ti (passed as row vector t) and returns a row vector (v1, . . . , vN) of values of an in-
terpolating function at t1, . . . , tN . For the case of polynomial interpolation such function is
ipolevalbarycentric and is available on the course webpage as ipolevalbarycentric.m.

The following code implements a MATLAB function that effects a transformation of data values
based on the interpolation scheme implemented in ipeval. To understand how to pass func-
tions as functions arguments, please familiarize yourself with the concept of function handles in
MATLAB.

Listing 6.1: Implementation of iprectrf
1 f u n c t i o n y = iprectrf(x,y,ipeval)
2 % Data transformation by recursive interpolation.

3 % The function handle ipeval is an evaluation routine

4 % for an interpolation scheme.

5

6 n = l e n g t h(x);
7 i f (n ˜= l e n g t h(y)), error(’length mismatch’); end
8 i f (n > 2)
9 % Odd number of data points needed for binary decimation

10 i f (mod(n,2) ˜= 1), error(’odd number of points required’);
end
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11 y(2:2:n-1) = y(2:2:n-1) -
ipeval(x(1:2:n),y(1:2:n),x(2:2:n-1));

12 y(1:2:n) = iprectrf(x(1:2:n),y(1:2:n),ipeval);
13 end

(6.2a) What is the asymptotic complexity of iprectrf in terms of the number of data points
n→∞ when a handle to the routine intpolyval is passed?

HINT: Code in Listing 6.1 is available on the course webpage as iprectrf.m.

First determine the asymptotic computational effort required for ipolevalbarycentric.

Solution:

(6.2b) In [NMI, Sect. 3.1] of the lecture notes, linear interpolation of data points was introduced
as a simple example for an interpolation scheme: the data points are just connected by straight
lines.

Implement a MATLAB function

p = pwlinintp(x,y,t)

which is the version of ipeval for piecewise linear interpolation. Answer the previous subprob-
lem, if iprectrf is called with a handle to this routine.

HINT: You should make use of the knowledge that the nodes and evaluation points are sorted.

(6.2c) Implement a MATLAB function y = ipinvtrf(x,y,ipeval) for the inversion of
the recursive transformation of data, such that the following expression evaluates to true

y = ipinvtrf(x,iprectrf(x,y,ipeval),ipeval).

(6.2d) Test your implementation for the inversion of the recursive transformation of data in
subproblem (6.2c) when ipeval is given by

(i) ipolevalbarycentric: polynomial interpolation;

(ii) pwlinintp: piecewise linear interpolation;
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(iii) MATLAB routine spline: cubic spline interpolation (study the documentation of the
MATLAB function spline).

Use the data x = cos((2*(n:-1:1)-1)*pi/(2*n)) and y = rand(1,n) for n =
2L + 1 and L = 10.

(6.2e) The following MATLAB function is purported to provide a compression of the data by
recursive spline interpolation. The input is a set of 2L + 1 data points with ordered abscissas. The
argument ratio specifies the compression ratio. The function returns a structure containing
the relevant coefficients after compression.

Listing 6.2: Implementation of ipcompress
1 f u n c t i o n cd = ipcompress(x,y,ratio)
2 % Data compression by recursive spline interpolation

3

4 n = l e n g t h(y);
5 % transform data values by recursive interpolation

6 y = iprectrf(x,y,@spline);
7 % The smallest (in modulus) coefficients will be dropped

8 d = min( f l o o r((n-2)*ratio),n-2);
9 z = s o r t(abs(y(2:end-1)));

10 cd.idx = [1,( f i n d(abs(y(2:end-1)) > z(d+1)) + 1),n];
11 cd.values = y(cd.idx);
12 cd. l e n g t h = n;

Explain, why the routine perform a data compression.

HINT: The code in Listing 6.2 is available on the course webpage as ipcompress.m.

Solution:

(6.2f) Write a MATLAB function

function y = ipuncompress(x,cd)

that approximately restores the data compressed by ipcompress. Here x has to be the same
vector passed to ipcompress and cd is a data structure created by ipcompress.

HINT: Use the inversion of recursive spline interpolation.

(6.2g) Plot the data (x, y) given by x=0:1/(n-1):1, y = cos(πe3x) for L = 8 and n =
2L + 1, and the data resulting from 75%, 85%, and 95% compression via ipcompress.
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(6.2h) Let ỹ(r) denote the data vector resulting from recursive spline interpolation compression
with compression ratio 0 ≤ r ≤ 1 of the data vector y (with respect to the abscissa points xi). For
the data used in the previous subproblem create a semi-logarithmic plot of ‖ỹ(r)− y‖2 versus r.
What empiric dependence of ‖ỹ(r)− y‖2 on r can you observe?

Problem 6.3 A Cubic Spline
Determine a cubic spline f : [1, 4] → R that interpolates a function with values (y1, y2, y3) =
(1, 2, 3) at points (x1, x2, x3) = (1, 2, 4) such that

(i) f(xi) = yi for i = 1, 2, 3,

(ii) f |[xi,xi+1] are polynomials of degree three for i = 1, 2,

(iii) f , f ′ and f ′′ are continuous at x2,

(iv) f ′(x1) = 0 = f ′(x3).

To do this, construct a system of linear equations and solve it in MATLAB. Plot your solution and
compare it to the MATLAB function spline. The MATLAB command hold may be useful to
overlay different parts of the plot.

Solution: We set

fi(x) = aix
3 + bix

2 + cix+ di, for i = 1, 2,

where f1 = f |[x1,x2] and f2 = f |[x2,x3].

Listing 6.3: Testcalls for Problem 6.3
1 cubic_spline

Listing 6.4: Output for Testcalls for Problem 6.3
1 >> test_call
2
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3 f1 =
4

5 -0.7500 4.0000 -5.7500 3.5000
6

7 f2 =
8

9 0.0625 -0.8750 4.0000 -3.0000

Problem 6.4 Quadratic Splines
Beyond the cubic splines presented in class, splines of general polynomial degree can be defined.
One member of the resulting family of piecewise polynomial functions are the quadratic splines,
which we consider on the interval [0, 1] in this problem.

Definition. Given a knot set N := {0 =: x0 < x1 < . . . < xn−1 < xn := 1} we define the space
of quadratic splines over N as

S2,N := {s ∈ C1([0, 1]) : sj = s|[xj−1,xj ] ∈ P2 ∀j = 1, . . . , n} .

In particular, we deal with quadratic spline interpolation of periodic functions: Consider a 1-
periodic function f : R→ R, that is, f(t+ 1) = f(t) for all t ∈ R, and a set of nodes

N := {0 = x0 < x1 < x2 < · · · < xn−1 < xn = 1} ⊂ [0, 1] .

We want to approximate f using a 1-periodic quadratic spline function s ∈ S2,N , which interpo-
lates f in the midpoints of the intervals [xj−1, xj] for j = 0, . . . , n.

Similarly to what was done in Section 3.9 of the lecture notes for cubic splines, we locally pa-
rameterize a quadratic spline function s ∈ S2,N as follows. For all j = 1, . . . , n,

s|[xj−1,xj ](x) = dj τ
2 + cj 4 τ(1− τ) + dj−1 (1− τ)2 , τ :=

x− xj−1

xj − xj−1

, (6.4.1)

with cj, dk ∈ R, j = 1, . . . , n, k = 0, . . . , n.

(6.4a) How are the coefficients {dj}nj=0 related to particular point values of s?

Solution:

(6.4b) What is the dimension of the subspace of 1-periodic spline functions in S2,N ?

HINT: Rely on a heuristic counting argument based subtracting the number of linear constraints
implied by the continuity requirements from the dimension of the space ofN -piecewise quadratic
polynomials.

Solution:
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(6.4c) What kind of continuity is already guaranteed by the use of the representation (6.4.1)?

Solution:

(6.4d) Derive a linear system of equations (system matrix and right hand side) whose solution
provides the coefficients cj and dj in the local representation (6.4.1) of a 1-periodic quadratic
spline s that satisfies the interpolation conditions

s(1
2
(xj−1 + xj)) = yj , j = 1, . . . , n , (6.4.2)

where the values yj , j = 1, . . . , n are given.

HINT: We know S2,N ⊂ C1([0, 1]), which provides linear constraints at the knots xj , j =
1, . . . , n. The constraints attached to xn are due to periodicity.

Solution: We can plug x = 1
2
(xj + xj−1) into (6.4.1) and set the values equal to yj . We obtain

τ = 1/2 and the following conditions

1

4
dj + cj +

1

4
dj−1 = yj, j = 1, ..., n. (6.4.3)

We obtain conditions on dj by matching the derivatives at the interfaces.

Simplifying for dj we obtain:

dj =
2
cj
∆j

+ 2
cj+1

∆j+1

1
∆j

+ 1
∆j+1

= 2
cj∆j+1 + cj+1∆j

∆j + ∆j+1

= 2
cj(xj+1 − xj) + cj+1(xj − xj−1)

xj+1 − xj−1

, j = 1, . . . , n.

Plugging this expression into (6.4.3), we get the following system of equations, for j = 1, . . . , n,
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We collect the coefficients and finally we obtain, for j = 1, . . . , n,

(6.4e) Implement an efficient MATLAB function

s = quadspline(x,y,t)

which takes as input a (sorted) knot vector x (of length n− 1, because x0 = 0 and xn = 1 will be
taken for granted), a n-vector y containing the values yj of the 1-periodic quadratic spline at the
midpoints 1

2
(xj−1 + xj), j = 1, . . . , n, and a sorted N -vector t of evaluation points in [0, 1].

The function returns the values of the interpolating quadratic spline s at the evaluation points t.

HINT: You should aim for an efficient implementation making use of the fact that the vectors x
and t are sorted.

(6.4f) Test your code from subproblem (6.4e) by interpolating the function f(x) := esin(2πx) in
the interpolation nodes =

{
1
20

+ j/10
}10

j=0
with a 1-periodic quadratic splines over the knot set

N = { j
10
}10
j=0. Plot the function f and the interpolating quadratic spline s on the interval [0, 1]

based on the evaluation of both functions in the points tj := j
200

, j = 0, . . . , 200.
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(6.4g) As in subproblem (6.4f) we consider the interpolation of the function f(x) := esin(2πx)

in the interpolation nodes =
{

1
2n

+ j/n
}n
j=0

, n ∈ N, with a 1-periodic quadratic splines sn over
the knot set N = { j

n
}nj=0. This time we are interested in the behavior of maximum norm of the

interpolation error

‖f − sn‖∞,[0,1] = sup
x∈[0,1]

|f(x)− sn(x)| ,

as a function of n and its asymptotic trend for n→∞.

Implement a MATLAB script that computes the interpolation error in the maximum norm for
n = 22, . . . , 211. Create a loglog plot of the error versus the number n of knot intervals. Describe
qualitatively and quantitatively the convergence sn → f in the maximum norm for n→∞.

HINT: As explained in class, the maximum norm of the interpolation error can only be computed
approximately. To obtain an approximation evaluate the difference |f(t) − sn(t)| at N � n
equidistant evaluation points in [0, 1] and then take the maximum. You may choose N = 10.000.

Published on April 8, 2016.
To be submitted on April 19, 2016.
MATLAB: Submit all file in the online system. Include the files that generate the
plots. Label all your plots. Include commands to run your functions. Comment
on your results.

References

[NMI] Lecture Notes for the course “Numerische Mathematik I”.

Last modified on April 11, 2016

Problem Sheet 6 Page 9 References

https://www.math.ethz.ch/~grsam/NumMath1/skript/

	Problem Sheet 6
	6.1 Approximation of the First Derivative by Interpolation
	6.2 Data Compression by Interpolation
	6.3 A Cubic Spline
	6.4 Quadratic Splines


