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For some problems, parts of the solution are already given. Fill in the gaps and complete the
proofs where you see a red band at the left margin.
Introduction. Splines, interpolation

Problem 7.1 Solving Systems of Equations for Periodic Splines
(7.1a) Show that the Sherman-Morrison formula holds true for an invertible Matrix A ∈ Rn×n

and vectors u,v ∈ Rn, i. e.

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
.

Solution: It is easy to see that

(
I+wv>

)−1
= I− wv>

1 + v>w

is true since
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(7.1b) Let Bc = d be a system of equations in order to determine the coefficients c ∈ Rn of
a periodic spline in an analogous way as in [NMI, Eq. 3.53] in the script. Choose u, v and a
tridiagonal matrix A such that B = A + uv>. Describe an algorithm for solving Bc = d with
complexity O(n).

Solution: The matrix B has the structure

B =


α0 β1 βn
β1 α1 β2

β2
. . . . . .
. . . . . . βn−1

βn βn−1 αn−1

.

To split B into A+ uv>, where A is tridiagonal, we choose (for example) u and v as

Using this, we can first rewrite the equation Bc = d to

We construct the following algorithm for solving Bc = d:
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Summing this up, we can reach a total runtime of O(n).

Problem 7.2 Hermite Interpolation
We want to interpolate f(x) = cos x on [0, π

2
] in x = 0 by a polynomial degree two.

(7.2a) Compute the Lagrange interpolating polynomial p2,ε with supporting points x0 = 0,
x1 = ε, x2 = π/2. Then compute p2,ε→0(x) := limε→0 p2,ε(x).

Solution: We apply Newton’s scheme to get

This implies that the interpolating polynomial is given by

For the limit ε→ 0 we use de l’Hôpital’s rule for the coefficients to get
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(7.2b) Compute the Hermite interpolating polynomial q2 of degree two on the supporting points
x0, x2 from subproblem (7.2a) only but using the first derivative of f , f ′(0), as interpolation data.
Compare p2,ε→0 to q2.

Solution: Here, we apply Hermite’s scheme, to get

Therefore, the Hermite interpolating polynomial is q2(x) = 1− 4
π2x

2. This shows by example that
Hermite interpolation can be seen as a limiting process of Newton interpolation for two collapsing
data points.

(7.2c) Now compute the Hermite interpolating polynomial w2,δ of degree two for the data
(0, f(0), f ′(0)) and (δ, f(δ)). Then compute w2,δ→0(x) := limδ→0w2,δ(x) again. Compare w2,δ

to the Taylor series of f around x = 0.

Solution: In this case, the Hermite scheme results in the table

Consequently, we get w2,δ(x) = 1 + cos(δ)−1
δ2

x2. For the limit δ → 0, we apply de l’Hôpital’s rule
on the coefficient to get
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Problem 7.3 Trigonometric Interpolation
Fourier sums and polynomials are closely related as has become apparent in the proof of [NMI,
Thm. 3.23]. In this problem we study interpolation by Fourier sums that are aptly called trigono-
metric polynomials. Hence, the title of this problem.

Let f ∈ C0(R) be a 2π-periodic function, that is f(t + 2π) = f(t) for all t ∈ R. Consider the
interpolation nodes xj = 2πj/n for j = 0, . . . , n− 1 and n = 2m+ 1 with m ∈ N.

(7.3a) Show that there exists a unique vector c = (c−m, . . . , cm) ∈ Cn such that

q(xj) = f(xj) for j = 0, . . . , n− 1 where q(t) =
m∑

k=−m

cke
ikt

HINT: Reduce to polynomial interpolation.

Solution: Let us evaluate the trigonometric polynomial q(t) at the interpolation nodes, namely
for j = 0, . . . , n− 1

q(xj) =

(7.3b) What is the expression of the interpolant q(t) from subproblem (7.3a) when f(t) = ei`t

and ` ∈ Z?

Solution:
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(7.3c) Let f(t) be given as a so called “Fourier series”

f(t) =
∞∑

`=−∞

f̂`e
i`t , f̂` ∈ C , (7.3.1)

with
∣∣∣f̂`∣∣∣ ≤ C`−2 for some C > 0 (Why this assumption?). Compute the corresponding trigono-

metric interpolant q(t) as introduced in subproblem (7.3a).

HINT: Use subproblem (7.3b).

Solution: Based on subproblem (7.3b), we have the unique trigonometric interpolant of t 7→
f̂`e

i`t is t 7→ f̂`e
i`′t where ` = nv + `′ for some v ∈ Z and `′ ∈ {−m, . . . ,m}. Therefore, the

coefficient c`′ to ei`
′t is given as

(7.3d) Finally, we tackle an interpolation error estimate for trigonometric interpolation based
on the Fourier series representation (7.3.1) of the interpolant.

Find an estimate for the maximum norm of the interpolation error ‖f − q‖∞,R when f and q are

defined as in subproblem (7.3c) and
∣∣∣f̂`∣∣∣ ≤ C`−r, r ∈ N \ {1}, for some C > 0.

Solution:

‖f − q‖∞,R = sup
t∈R

∣∣∣∣∣
+∞∑
`=−∞

f̂`e
i`t −

m∑
k=−m

+∞∑
v=−∞

f̂nv+ke
ikt

∣∣∣∣∣
= sup

t∈R

∣∣∣∣∣∣
∑
|`|>m

f̂`e
i`t +

m∑
k=−m

(
f̂ke

ikt −
+∞∑
v=−∞

f̂nv+ke
ikt

)∣∣∣∣∣∣
≤
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Problem 7.4 Condition of the Newton-Cotes Formulas
(7.4a) Set up a linear system of equations for the scaled weights αj , j = 0, . . . , n of the closed
Newton-Cotes formula Q(n) on the interval [0, 1].

(7.4b) Write a MATLAB function getNCWeights(n) that solves the linear system from sub-
problem (7.4a) and returns the solution vector α ∈ Rn+1 as a row vector.

Calculate the weights for n = 1, . . . , 10. At what order do the first negative weights occur?

(7.4c) Calculate the absolute condition κabs
(
Q(n)

)
of the Newton-Cotes formulas for n =

1, 2, . . . , 20 on [0, 1] and plot the condition in a diagram with logarithmic y-axis.

Listing 7.1: Testcalls for Problem 7.4
1 n = 1:10;
2 f o r i = 1: l e n g t h(n)
3 alp = getNCWeights(n(i));
4 f p r i n t f(’\n n = %.2f:\t’, n(i));
5 f p r i n t f(’%.4f ’, alp);
6 end
7 f p r i n t f(’\n’);

Listing 7.2: Output for Testcalls for Problem 7.4
1 >> test_call
2

3 n = 1.00: 0.5000 0.5000
4 n = 2.00: 0.1667 0.6667 0.1667
5 n = 3.00: 0.1250 0.3750 0.3750 0.1250
6 n = 4.00: 0.0778 0.3556 0.1333 0.3556 0.0778
7 n = 5.00: 0.0660 0.2604 0.1736 0.1736 0.2604

0.0660
8 n = 6.00: 0.0488 0.2571 0.0321 0.3238 0.0321

0.2571 0.0488
9 n = 7.00: 0.0435 0.2070 0.0766 0.1730 0.1730

0.0766 0.2070 0.0435
10 n = 8.00: 0.0349 0.2077 -0.0327 0.3702 -0.1601

0.3702 -0.0327 0.2077 0.0349
11 n = 9.00: 0.0319 0.1757 0.0121 0.2159 0.0645

0.0645 0.2159 0.0121 0.1757 0.0319
12 n = 10.00: 0.0268 0.1775 -0.0810 0.4549 -0.4352

0.7138 -0.4352 0.4549 -0.0810 0.1775 0.0268

Problem 7.5 Integral Representation of the Interpolation Error
In [NMI, Thm. 3.6] we found a representation for the error of polynomial interpolation of a
function that relied on evaluating a derivative of the function at an unknown position (x∗ in the
statement of the theorem).

There is another family of error representation formulas for polynomial interpolation on an inter-
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val [a, b] that are of the form (f ∈ Cn+1([a, b]))

(f − PNf)(t) =
∫ b

a

GN (t, ξ)f
(n+1)(ξ) dξ , (7.5.1)

where GN : [a, b]2 → R is a suitable kernel function. In this problem we derive such a represen-
tation for the simple case of linear interpolation and use it for estimating the interpolation error.

(7.5a) Assume that f ∈ C2([0, 1]) and p ∈ P1 with p(0) = f(0), p(1) = f(1). Show that for
t ∈ [0, 1]

(p− f)(t) =
∫ 1

0

G(t, ξ)f ′′(ξ) dξ, (7.5.2)

where the kernel function is given by

G(t, ξ) =

{
(1− t)ξ 0 ≤ ξ < t
t(1− ξ) t ≤ ξ ≤ 1

. (7.5.3)

HINT: Use integration by parts.

(7.5b) Error representations according to (7.5.1) are very useful for obtaining error estimates in
norms that involve integrals.

Let −∞ < a < b <∞ and f ∈ C2([a, b]). Assume that p ∈ P1 with p(a) = f(a), p(b) = f(b).
Use Equation 7.5.2 to show that

‖f − p‖L2([a,b]) ≤ (b− a)2‖f ′′‖L2([a,b]) (7.5.4)

where the L2-norm of a continuous function g on [a, b] is defined by

‖g‖2L2([a,b]) :=

∫ b

a

|g(ξ)|2dξ.

HINT: First prove (7.5.4) on the interval [0, 1], i.e. for a = 0 and b = 1. Then prove the general
case by considering the function f̂(t) := f(a + t(b − a)) ∈ C2([0, 1]) for f ∈ C2([a, b]). This
technique is known as scaling argument.

(7.5c) Error representations like (7.5.1) also yield estimates in the maximum norm, though they
may not be as sharp as those extracted from [NMI, Eq. (3.11)].

Show that f(a) = f(b) = 0 implies that

‖f‖L∞([a,b]) ≤ (b− a)2‖f ′′‖L∞([a,b]).

HINT: Proceed similar as in (7.5b).

Published on April 16, 2016.

To be submitted on April 26, 2016.
MATLAB: Submit all files in the online system. Include the files that generate the
plots. Label all your plots. Include commands to run your functions. Comment
on your results.
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