Numerische Mathematik I

Homework Problem Sheet 8

For some problems, parts of the solution are already given. Fill in the gaps and complete the proofs where you see a red band at the left margin.

Introduction. Quadrature, Tschebyscheff polynomials.

Problem 8.1 Error of Quadrature

Let $[a, b] \subset \mathbb{R}$ with a < b be a bounded interval and let $f \in \mathcal{C}^2([a, b])$.

(8.1a) Show that there is a constant C > 0 independent of a, b and f, such that

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x - Q_{[a,b]}[f] \right| \leqslant C \cdot |b - a|^{3} \cdot ||f''||_{\mathcal{C}^{0}([a,b])},$$

where $Q_{[a,b]}[\cdot]$ denotes the rectangle method.

Solution: There are many different solutions, we present some of them here:

Using polynomial interpolation.

The rectangle method is symmetric, so polynomials of degree smaller than or equal to one are integrated exactly. Let p interpolate f at points $x_0 = \frac{a+b}{2}$ and $x_1 \in [a,b] \setminus \{x_0\}$. Then we have $\|\omega_2\|_{\mathcal{C}^0([a,b])} \leqslant |b-a|^2$ and we know that $Q_{[a,b]}[f] = \int_a^b p(x) \,\mathrm{d}x$.

By [NMI, Thm. 3.6], it follows that $|f(x)-p(x)| \leq \frac{1}{2}|b-a|^2\|f''\|_{\mathcal{C}^0([a,b])}$. Estimating the absolute value of the integral then gives

Using Newton. Set $x_0 = \frac{1}{2}(a+b)$. Then by the theorem about quadrature error of the Midpoint rule in [NMI, Sec. 4.1.2], we have

Using Taylor. Set again $x_0 = \frac{1}{2}(a+b)$. We have $f(x) = f(x_0) + hf'(x_0) + \frac{1}{2}(x-x_0)^2 f''(\xi(x))$ hence

Using Gauss. The trapezoidal rule is exactly the Gaussian quadrature for n=0. By [NMI, Thm. 4.18], we have

$$\left| \int_{-1}^{1} \widetilde{f}(t) \, dt - 2\widetilde{f}(0) \right| \leq \frac{1}{3} \|\widetilde{f}''\|_{\mathcal{C}^{0}([-1,1])}.$$

Set $x_0 = \frac{1}{2}(a+b)$ again. With $\widetilde{f}(t) := f(x_0 + (b-x_0)t)$ we get

$$\frac{b-a}{2} \left(2f(x_0) - \int_a^b f(x) \, dx \right) = 2\tilde{f}(0) - \int_{-1}^1 \tilde{f}(t) \, dt$$

and

$$\|\widetilde{f}''\|_{\mathcal{C}^0([-1,1])} = \frac{(b-a)^2}{2^2} \|f''\|_{\mathcal{C}^0([a,b])},$$

so the result follows.

(8.1b) For $f \in C^0([0,1])$ and $h = (N-1)^{-1}$, let $T_h[f]$ denote the iterated trapezoidal rule on N equidistant sampling points in the interval [0,1].

Show that for $f(x) := x^{\alpha}$, where $0 < \alpha < 1$, we have

$$\left| \int_0^1 f(x) \, \mathrm{d}x - T_h[f] \right| = \mathcal{O}(h^{\alpha+1}) \quad \text{for } h \to 0.$$

What changes if $f(x) = x^{\alpha}g(x)$, where $g \in \mathcal{C}^3([0,1])$?

Solution: Let $T_J^{(K)}[f]$ denote the trapezoidal rule with K equidistant sampling points on the interval J.

By [NMI, Thm. 4.4] with h = 1/(N-1), we get that the trapezoidal rule satisfies

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x - T_{[a,b]}^{(N)}[f] \right| \leqslant \frac{h^{2}}{12} (b-a) \max_{x \in [a,b]} |f''(x)|$$

for $f \in \mathcal{C}^2([a,b])$ – but this is the crucial point: $f \notin \mathcal{C}^2([a,b])$, so this theorem cannot be applied. Even just applying it to an interval [h,1] does not help because $f''(h) \propto h^{\alpha-2}$.

So let $[a_i, b_i] := h[i-1, i]$ for i = 1, ..., N-1 be the subintervals of the trapezoidal rule on N equidistant sampling points. On each of the N subintervals $J = [a_i, b_i] = [b_i - h, b_i]$, i = 2, ..., N-1, the trapezoidal rule satisfies

For $f(t)=t^{\alpha}$ with $0<\alpha<1$, we have $f'(t)=\alpha t^{\alpha-1}$ and $f''(t)=\alpha(\alpha-1)t^{\alpha-2}$. Hence f'' is a strictly increasing function on $(0,\infty)$ and so we have $f''(\xi)\leqslant Cb_i^{\alpha-2}$ for all $\xi\in J$.

Summing this over all N-1 intervals gives

Problem 8.2 Order of Quadrature

(8.2a) Calculate the points $x_0, x_1 \in [-1, 1]$ and the weights $A, B \in \mathbb{R}$ for the quadrature rule

$$\int_{-1}^{1} f(x) dx \approx Af(x_0) + Bf(x_1)$$

such that the formula has the highest possible degree. What is that degree?

Solution: A quadrature formula on n+1 points is of maximum degree 2n+2, in our case (n=1) we get degree ≤ 4 . The degree equals 4 if all monomials $1, x, x^2, x^3$ can be integrated exactly by our formula. This is the case if and only if

$$2 = A + B \tag{8.2.1}$$

$$0 = Ax_0 + Bx_1 (8.2.2)$$

$$\frac{2}{3} = Ax_0^2 + Bx_1^2 \tag{8.2.3}$$

$$0 = Ax_0^3 + Bx_1^3 (8.2.4)$$

From (8.2.2) and (8.2.4) we conclude $Bx_1(x_0^2-x_1^2)=0$. Hence one of the following cases must hold:

(8.2b) Calculate the *exact* result of $I = \int_1^5 \left| \frac{1}{2}x - \frac{3}{2} \right|^3 dx$ by using the result we obtained in subproblem (8.2a) and by modifying I in such a way that the integrand becomes a polynomial.

Solution:

From our quadrature formula we get:

Problem 8.3 Iterated Quadrature Formulas

Let x_i , i = 0, ..., n, with $-\infty < x_0 < x_1 < ... < x_n < \infty$ be fixed real numbers in arithmetic progression and let f be a smooth function on the interval $[x_0, x_n]$.

(8.3a) Check that $T_{h/2} = \frac{1}{2}(T_h + M_h)$, where

$$T_h[f] = \frac{h}{2} \left(f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right)$$
 and $M_h[f] = h \sum_{i=0}^{n-1} f(x_i + h/2)$

are the iterated trapezoidal rule and the iterated rectangle method, respectively.

Solution: We have

$$T_h[f] = \frac{h}{2} \left(f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right)$$

$$M_h[f] = h \sum_{i=0}^{n-1} f(x_{i+1/2}) \quad \text{where} \quad x_{i+1/2} := \frac{x_i + x_{i+1}}{2}.$$

Hence

(8.3b) Explicitly calculate one step of Romberg's method with values $T_h[f]$ and $T_{h/2}[f]$. Rearrange the result to a quadrature formula of step width h.

Solution: For f sufficiently smooth, we get an asymptotic expansion of the form

$$T_h[f] = I + c_2 h^2 + \mathcal{O}(h^4)$$
 and $T_{h/2}[f] = I + c_2 \frac{h^2}{4} + \mathcal{O}(h^4)$,

where I is the exact value of the integral. We now combine both terms linearly such that the terms with order h^4 cancel out. Set $T_{00} = T_h[f]$ and $T_{10} = T_{h/2}[f]$. Then we get

(8.3c) What is the asymptotic behaviour of the error of the new method?

Solution:

Problem 8.4 Chebychev Polynomials

In this problem you will meet a special set of polynomials that form a basis for the spaces \mathbb{P}_{n-1} of polynomials of degree $< n, n \in \mathbb{N}$. With respect to an also special set of interpolation nodes this basis has rather desirable properties.

Throughout this problem, for $n \in \mathbb{N}_0$ we set

$$T_n(t) := \cos(n \arccos(t)), \quad -1 \le t \le 1,$$

and for $n \in \mathbb{N}$

$$\mathcal{Z}_n := \left\{ x_k := \cos\left((k + \frac{1}{2}) \frac{\pi}{n} \right), \ k = 0, \dots, n - 1 \right\}.$$
 (8.4.1)

- **(8.4a)** Read through section 3.8 of the lecture notes.
- **(8.4b)** Show that $T_0(t) = 1$, $T_1(t) = t$, and

$$T_{n+1}(t) + T_{n-1}(t) = 2tT_n(t) , \quad n \ge 1 , \quad -1 \le t \le 1 .$$
 (8.4.2)

(8.4c) Show that for $n \ge 1$ the derivatives of the functions T_n satisfy the recursion

$$2T_n(t) = \frac{1}{n+1} \frac{d}{dt} T_{n+1}(t) - \frac{1}{n-1} \frac{d}{dt} T_{n-1}(t) .$$

- (8.4d) Show that T_n for $n \ge 1$, is a polynomial of degree n with leading coefficient 2^{n-1} .
- **(8.4e)** Show that

$$\mathcal{Z}_n = \{ t \in \mathbb{R} : T_n(t) = 0 \} .$$

(8.4f) Write a MATLAB function

function
$$y = evalT(n,t)$$

that computes $y_i := T_n(t_i)$, $n \in \mathbb{N}_0$, for arguments t_i , i = 1, ..., m, passed in the row vector t. No special functions like \cos and its inverse must be used.

The results are to be returned in the row vector y. What is the asymptotic computational effort of evalT for $n \to \infty$ and $m \to \infty$?

HINT: Use the recursion formula (8.4.2) for T_n .

(8.4g) We consider the interpolation problem with $V = \mathbb{P}_{n-1}$ and set of interpolation points \mathcal{Z}_n .

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the interpolation matrix for the basis $\mathcal{B} = \{T_0, T_1, \dots, T_{n-1}\}$ of V (i.e. the (j+1)th column of \mathbf{A} equals $(T_j(x_0), \dots, T_j(x_{n-1}))^{\top}$. Show that there is a regular diagonal matrix \mathbf{D} such that $\mathbf{A}\mathbf{D}$ is an orthogonal matrix.

(8.4h) Using the result of subproblem (8.4g), write an efficient (in terms of computational effort and memory!) MATLAB function

function
$$c = chebcoeff(y)$$

that computes the coefficients c_j , $j = 0, \dots, n-1$, in the representation

$$p(t) = \sum_{j=0}^{n-1} c_j T_j(t)$$

of the polynomial interpolant $p \in \mathbb{P}_{n-1}$ through the points (x_i, y_i) , $i = 0, \ldots, n-1$, where the nodes x_i are defined in (8.4.1). The data y_i are passed in the row vector y, and the coefficients are returned in the row vector z.

(8.4i) Based on (8.4.2) write a MATLAB function

function
$$y = chebsum(c, t)$$

that computes

$$y_i = \sum_{j=0}^{n-1} c_j T_j(t_i)$$

for i = 1, ..., m. The values t_i are the components of the row vector t, and the values y_i are made available in the row vector y.

What is the asymptotic computational effort of chebsum for $n \to \infty$ and $m \to \infty$?

Published on April 21, 2016.

To be submitted on May 3, 2016.

MATLAB: Submit all files in the online system. Include the files that generate the plots. Label all your plots. Include commands to run your functions. Comment on your results.

References

[NMI] Lecture Notes for the course "Numerische Mathematik I".

Last modified on April 20, 2016