Homework Problem Sheet 8

For some problems, parts of the solution are already given. Fill in the gaps and complete the proofs where you see a red band at the left margin.
Introduction. Quadrature, Tschebyscheff polynomials.

Problem 8.1 Error of Quadrature

Let $[a, b] \subset \mathbb{R}$ with $a<b$ be a bounded interval and let $f \in \mathcal{C}^{2}([a, b])$.
(8.1a) Show that there is a constant $C>0$ independent of a, b and f, such that

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x-Q_{[a, b]}[f]\right| \leqslant C \cdot|b-a|^{3} \cdot\left\|f^{\prime \prime}\right\|_{\mathcal{C}^{0}([a, b])}
$$

where $Q_{[a, b]}[\cdot]$ denotes the rectangle method.
Solution: There are many different solutions, we present some of them here:

Using polynomial interpolation.

The rectangle method is symmetric, so polynomials of degree smaller than or equal to one are integrated exactly. Let p interpolate f at points $x_{0}=\frac{a+b}{2}$ and $x_{1} \in[a, b] \backslash\left\{x_{0}\right\}$. Then we have $\left\|\omega_{2}\right\|_{\mathcal{C}^{0}([a, b])} \leqslant|b-a|^{2}$ and we know that $Q_{[a, b]}[f]=\int_{a}^{b} p(x) \mathrm{d} x$.
By [NMI, Thm. 3.6], it follows that $|f(x)-p(x)| \leqslant \frac{1}{2}|b-a|^{2}\left\|f^{\prime \prime}\right\|_{\mathcal{C}^{0}([a, b])}$. Estimating the absolute value of the integral then gives

Using Newton. Set $x_{0}=\frac{1}{2}(a+b)$. Then by the theorem about quadrature error of the Midpoint rule in [NMI, Sec. 4.1.2], we have

Using Taylor. Set again $x_{0}=\frac{1}{2}(a+b)$. We have $f(x)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{2} f^{\prime \prime}(\xi(x))$ hence

Using Gauss. The trapezoidal rule is exactly the Gaussian quadrature for $n=0$. By [NMI, Thm. 4.18], we have

$$
\left|\int_{-1}^{1} \widetilde{f}(t) \mathrm{d} t-2 \widetilde{f}(0)\right| \leqslant \frac{1}{3}\left\|\widetilde{f}^{\prime \prime}\right\|_{\mathcal{C}^{0}([-1,1])} .
$$

Set $x_{0}=\frac{1}{2}(a+b)$ again. With $\widetilde{f}(t):=f\left(x_{0}+\left(b-x_{0}\right) t\right)$ we get

$$
\frac{b-a}{2}\left(2 f\left(x_{0}\right)-\int_{a}^{b} f(x) \mathrm{d} x\right)=2 \widetilde{f}(0)-\int_{-1}^{1} \widetilde{f}(t) \mathrm{d} t
$$

and

$$
\left\|\widetilde{f}^{\prime \prime}\right\|_{\mathcal{C}^{0}([-1,1])}=\frac{(b-a)^{2}}{2^{2}}\left\|f^{\prime \prime}\right\|_{\mathcal{C}^{0}([a, b])},
$$

so the result follows.
(8.1b) For $f \in \mathcal{C}^{0}([0,1])$ and $h=(N-1)^{-1}$, let $T_{h}[f]$ denote the iterated trapezoidal rule on N equidistant sampling points in the interval $[0,1]$.
Show that for $f(x):=x^{\alpha}$, where $0<\alpha<1$, we have

$$
\left|\int_{0}^{1} f(x) \mathrm{d} x-T_{h}[f]\right|=\mathcal{O}\left(h^{\alpha+1}\right) \quad \text { for } h \rightarrow 0 .
$$

What changes if $f(x)=x^{\alpha} g(x)$, where $g \in \mathcal{C}^{3}([0,1])$?
Solution: Let $T_{J}^{(K)}[f]$ denote the trapezoidal rule with K equidistant sampling points on the interval J.
By [NMI, Thm. 4.4] with $h=1 /(N-1)$, we get that the trapezoidal rule satisfies

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x-T_{[a, b]}^{(N)}[f]\right| \leqslant \frac{h^{2}}{12}(b-a) \max _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|
$$

for $f \in \mathcal{C}^{2}([a, b])$ - but this is the crucial point: $f \notin \mathcal{C}^{2}([a, b])$, so this theorem cannot be applied. Even just applying it to an interval $[h, 1]$ does not help because $f^{\prime \prime}(h) \propto h^{\alpha-2}$.
So let $\left[a_{i}, b_{i}\right]:=h[i-1, i]$ for $i=1, \ldots, N-1$ be the subintervals of the trapezoidal rule on N equidistant sampling points. On each of the N subintervals $J=\left[a_{i}, b_{i}\right]=\left[b_{i}-h, b_{i}\right]$, $i=2, \ldots, N-1$, the trapezoidal rule satisfies

For $f(t)=t^{\alpha}$ with $0<\alpha<1$, we have $f^{\prime}(t)=\alpha t^{\alpha-1}$ and $f^{\prime \prime}(t)=\alpha(\alpha-1) t^{\alpha-2}$. Hence $f^{\prime \prime}$ is a strictly increasing function on $(0, \infty)$ and so we have $f^{\prime \prime}(\xi) \leqslant C b_{i}^{\alpha-2}$ for all $\xi \in J$.

Summing this over all $N-1$ intervals gives

Problem 8.2 Order of Quadrature

(8.2a) Calculate the points $x_{0}, x_{1} \in[-1,1]$ and the weights $A, B \in \mathbb{R}$ for the quadrature rule

$$
\int_{-1}^{1} f(x) \mathrm{d} x \approx A f\left(x_{0}\right)+B f\left(x_{1}\right)
$$

such that the formula has the highest possible degree. What is that degree?
Solution: A quadrature formula on $n+1$ points is of maximum degree $2 n+2$, in our case ($n=1$) we get degree ≤ 4. The degree equals 4 if all monomials $1, x, x^{2}, x^{3}$ can be integrated exactly by our formula. This is the case if and only if

$$
\begin{align*}
& 2=A+B \tag{8.2.1}\\
& 0=A x_{0}+B x_{1} \tag{8.2.2}\\
& \frac{2}{3}=A x_{0}^{2}+B x_{1}^{2} \tag{8.2.3}\\
& 0=A x_{0}^{3}+B x_{1}^{3} \tag{8.2.4}
\end{align*}
$$

From (8.2.2) and (8.2.4) we conclude $B x_{1}\left(x_{0}^{2}-x_{1}^{2}\right)=0$. Hence one of the following cases must hold:
(8.2b) Calculate the exact result of $I=\int_{1}^{5}\left|\frac{1}{2} x-\frac{3}{2}\right|^{3} \mathrm{~d} x$ by using the result we obtained in subproblem (8.2a) and by modifying I in such a way that the integrand becomes a polynomial.

Solution:

From our quadrature formula we get:

Problem 8.3 Iterated Quadrature Formulas

Let $x_{i}, i=0, \ldots, n$, with $-\infty<x_{0}<x_{1}<\ldots<x_{n}<\infty$ be fixed real numbers in arithmetic progression and let f be a smooth function on the interval $\left[x_{0}, x_{n}\right]$.
(8.3a) Check that $T_{h / 2}=\frac{1}{2}\left(T_{h}+M_{h}\right)$, where

$$
T_{h}[f]=\frac{h}{2}\left(f\left(x_{0}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)\right) \quad \text { and } \quad M_{h}[f]=h \sum_{i=0}^{n-1} f\left(x_{i}+h / 2\right)
$$

are the iterated trapezoidal rule and the iterated rectangle method, respectively.
Solution: We have

$$
\begin{gathered}
T_{h}[f]=\frac{h}{2}\left(f\left(x_{0}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)\right) \\
M_{h}[f]=h \sum_{i=0}^{n-1} f\left(x_{i+1 / 2}\right) \quad \text { where } \quad x_{i+1 / 2}:=\frac{x_{i}+x_{i+1}}{2} .
\end{gathered}
$$

Hence
(8.3b) Explicitly calculate one step of Romberg's method with values $T_{h}[f]$ and $T_{h / 2}[f]$. Rearrange the result to a quadrature formula of step width h.
Solution: For f sufficiently smooth, we get an asymptotic expansion of the form

$$
T_{h}[f]=I+c_{2} h^{2}+\mathcal{O}\left(h^{4}\right) \quad \text { and } \quad T_{h / 2}[f]=I+c_{2} \frac{h^{2}}{4}+\mathcal{O}\left(h^{4}\right)
$$

where I is the exact value of the integral. We now combine both terms linearly such that the terms with order h^{4} cancel out. Set $T_{00}=T_{h}[f]$ and $T_{10}=T_{h / 2}[f]$. Then we get
(8.3c) What is the asymptotic behaviour of the error of the new method?

Solution:

Problem 8.4 Chebychev Polynomials

In this problem you will meet a special set of polynomials that form a basis for the spaces \mathbb{P}_{n-1} of polynomials of degree $<n, n \in \mathbb{N}$. With respect to an also special set of interpolation nodes this basis has rather desirable properties.

Throughout this problem, for $n \in \mathbb{N}_{0}$ we set

$$
T_{n}(t):=\cos (n \arccos (t)), \quad-1 \leq t \leq 1
$$

and for $n \in \mathbb{N}$

$$
\begin{equation*}
\mathcal{Z}_{n}:=\left\{x_{k}:=\cos \left(\left(k+\frac{1}{2}\right) \frac{\pi}{n}\right), k=0, \ldots, n-1\right\} \tag{8.4.1}
\end{equation*}
$$

(8.4a) Read through section 3.8 of the lecture notes.
(8.4b) Show that $T_{0}(t)=1, T_{1}(t)=t$, and

$$
\begin{equation*}
T_{n+1}(t)+T_{n-1}(t)=2 t T_{n}(t), \quad n \geq 1, \quad-1 \leq t \leq 1 \tag{8.4.2}
\end{equation*}
$$

(8.4c) Show that for $n \geq 1$ the derivatives of the functions T_{n} satisfy the recursion

$$
2 T_{n}(t)=\frac{1}{n+1} \frac{d}{d t} T_{n+1}(t)-\frac{1}{n-1} \frac{d}{d t} T_{n-1}(t) .
$$

(8.4d) Show that T_{n} for $n \geq 1$, is a polynomial of degree n with leading coefficient 2^{n-1}.
(8.4e) Show that

$$
\mathcal{Z}_{n}=\left\{t \in \mathbb{R}: T_{n}(t)=0\right\}
$$

(8.4f) Write a Matlab function

$$
\text { function } y=\operatorname{evalt}(n, t)
$$

that computes $y_{i}:=T_{n}\left(t_{i}\right), n \in \mathbb{N}_{0}$, for arguments $t_{i}, i=1, \ldots, m$, passed in the row vector t . No special functions like cos and its inverse must be used.
The results are to be returned in the row vector y . What is the asymptotic computational effort of evalT for $n \rightarrow \infty$ and $m \rightarrow \infty$?

Hint: Use the recursion formula (8.4.2) for T_{n}.
(8.4g) We consider the interpolation problem with $V=\mathbb{P}_{n-1}$ and set of interpolation points \mathcal{Z}_{n}.
Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the interpolation matrix for the basis $\mathcal{B}=\left\{T_{0}, T_{1}, \ldots, T_{n-1}\right\}$ of V (i.e. the $(j+1)$ th column of \mathbf{A} equals $\left(T_{j}\left(x_{0}\right), \ldots, T_{j}\left(x_{n-1}\right)\right)^{\top}$. Show that there is a regular diagonal matrix \mathbf{D} such that $\mathbf{A D}$ is an orthogonal matrix.
(8.4h) Using the result of subproblem (8.4g), write an efficient (in terms of computational effort and memory!) Matlab function

```
function c = chebcoeff(y)
```

that computes the coefficients $c_{j}, j=0, \ldots, n-1$, in the representation

$$
p(t)=\sum_{j=0}^{n-1} c_{j} T_{j}(t)
$$

of the polynomial interpolant $p \in \mathbb{P}_{n-1}$ through the points $\left(x_{i}, y_{i}\right), i=0, \ldots, n-1$, where the nodes x_{i} are defined in (8.4.1). The data y_{i} are passed in the row vector y , and the coefficients are returned in the row vector c .
(8.4i) Based on (8.4.2) write a Matlab function

$$
\text { function } y=\text { chebsum (} c, t)
$$

that computes

$$
y_{i}=\sum_{j=0}^{n-1} c_{j} T_{j}\left(t_{i}\right)
$$

for $i=1, \ldots, m$. The values t_{i} are the components of the row vector t, and the values y_{i} are made available in the row vector y.

What is the asymptotic computational effort of chebsum for $n \rightarrow \infty$ and $m \rightarrow \infty$?

Published on April 21, 2016.
To be submitted on May 3, 2016.
Matlab: Submit all files in the online system. Include the files that generate the plots. Label all your plots. Include commands to run your functions. Comment on your results.

References

[NMI] Lecture Notes for the course "Numerische Mathematik I".

Last modified on April 20, 2016

