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For some problems, parts of the solution are already given. Fill in the gaps and complete the
proofs where you see a red band at the left margin.
Introduction. Quadrature, Tschebyscheff polynomials.

Problem 8.1 Error of Quadrature
Let [a, b] ⊂ R with a < b be a bounded interval and let f ∈ C2([a, b]).

(8.1a) Show that there is a constant C > 0 independent of a, b and f , such that∣∣∣∣∫ b

a

f(x) dx−Q[a,b][f ]

∣∣∣∣ 6 C · |b− a|3 · ‖f ′′‖C0([a,b]),

where Q[a,b][·] denotes the rectangle method.

Solution: There are many different solutions, we present some of them here:

Using polynomial interpolation.

The rectangle method is symmetric, so polynomials of degree smaller than or equal to one are
integrated exactly. Let p interpolate f at points x0 = a+b

2
and x1 ∈ [a, b] \ {x0}. Then we have

‖ω2‖C0([a,b]) 6 |b− a|2 and we know that Q[a,b][f ] =
∫ b
a
p(x) dx.

By [NMI, Thm. 3.6], it follows that |f(x)−p(x)| 6 1
2
|b−a|2‖f ′′‖C0([a,b]). Estimating the absolute

value of the integral then gives

Using Newton. Set x0 = 1
2
(a + b). Then by the theorem about quadrature error of the Midpoint

rule in [NMI, Sec. 4.1.2], we have
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Using Taylor. Set again x0 = 1
2
(a+ b). We have f(x) = f(x0) + hf ′(x0) +

1
2
(x− x0)2f ′′(ξ(x))

hence

Using Gauss. The trapezoidal rule is exactly the Gaussian quadrature for n = 0. By [NMI,
Thm. 4.18], we have ∣∣∣∣∫ 1

−1
f̃(t) dt− 2f̃(0)

∣∣∣∣ 6 1

3

∥∥f̃ ′′∥∥C0([−1,1]).
Set x0 = 1

2
(a+ b) again. With f̃(t) := f(x0 + (b− x0)t) we get

b− a
2

(
2f(x0)−

∫ b

a

f(x) dx

)
= 2f̃(0)−

∫ 1

−1
f̃(t) dt

and ∥∥f̃ ′′∥∥C0([−1,1]) = (b− a)2

22
‖f ′′‖C0([a,b]),

so the result follows.

(8.1b) For f ∈ C0([0, 1]) and h = (N − 1)−1, let Th[f ] denote the iterated trapezoidal rule on
N equidistant sampling points in the interval [0, 1].

Show that for f(x) := xα, where 0 < α < 1, we have∣∣∣∣∫ 1

0

f(x) dx− Th[f ]
∣∣∣∣ = O(hα+1) for h→ 0.
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What changes if f(x) = xαg(x), where g ∈ C3([0, 1])?

Solution: Let T (K)
J [f ] denote the trapezoidal rule with K equidistant sampling points on the

interval J .

By [NMI, Thm. 4.4] with h = 1/(N − 1), we get that the trapezoidal rule satisfies∣∣∣∣∫ b

a

f(x) dx− T (N)
[a,b] [f ]

∣∣∣∣ 6 h2

12
(b− a) max

x∈[a,b]
|f ′′(x)|

for f ∈ C2([a, b]) – but this is the crucial point: f /∈ C2([a, b]), so this theorem cannot be applied.
Even just applying it to an interval [h, 1] does not help because f ′′(h) ∝ hα−2.

So let [ai, bi] := h[i − 1, i] for i = 1, . . . , N − 1 be the subintervals of the trapezoidal rule
on N equidistant sampling points. On each of the N subintervals J = [ai, bi] = [bi − h, bi],
i = 2, . . . , N − 1, the trapezoidal rule satisfies

For f(t) = tα with 0 < α < 1, we have f ′(t) = αtα−1 and f ′′(t) = α(α− 1)tα−2. Hence f ′′ is a
strictly increasing function on (0,∞) and so we have f ′′(ξ) 6 Cbα−2i for all ξ ∈ J .

Summing this over all N − 1 intervals gives

Problem Sheet 8 Page 3 Problem 8.1



Problem 8.2 Order of Quadrature
(8.2a) Calculate the points x0, x1 ∈ [−1, 1] and the weights A,B ∈ R for the quadrature rule∫ 1

−1
f(x) dx ≈ Af(x0) +Bf(x1)

such that the formula has the highest possible degree. What is that degree?

Solution: A quadrature formula on n + 1 points is of maximum degree 2n + 2, in our case
(n = 1) we get degree ≤ 4. The degree equals 4 if all monomials 1, x, x2, x3 can be integrated
exactly by our formula. This is the case if and only if

2 = A+B (8.2.1)
0 = Ax0 +Bx1 (8.2.2)
2

3
= Ax20 +Bx21 (8.2.3)

0 = Ax30 +Bx31 (8.2.4)

From (8.2.2) and (8.2.4) we conclude Bx1(x20 − x21) = 0. Hence one of the following cases must
hold:
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(8.2b) Calculate the exact result of I =
∫ 5

1

∣∣1
2
x− 3

2

∣∣3 dx by using the result we obtained in
subproblem (8.2a) and by modifying I in such a way that the integrand becomes a polynomial.

Solution:

From our quadrature formula we get:

Problem 8.3 Iterated Quadrature Formulas
Let xi, i = 0, . . . , n, with −∞ < x0 < x1 < . . . < xn < ∞ be fixed real numbers in arithmetic
progression and let f be a smooth function on the interval [x0, xn].

(8.3a) Check that Th/2 = 1
2
(Th +Mh), where

Th[f ] =
h

2

(
f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)

)
and Mh[f ] = h

n−1∑
i=0

f(xi + h/2)

are the iterated trapezoidal rule and the iterated rectangle method, respectively.

Solution: We have

Th[f ] =
h

2

(
f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)

)

Mh[f ] = h
n−1∑
i=0

f(xi+1/2) where xi+1/2 :=
xi + xi+1

2
.

Hence

Problem Sheet 8 Page 5 Problem 8.3



(8.3b) Explicitly calculate one step of Romberg’s method with values Th[f ] and Th/2[f ]. Rear-
range the result to a quadrature formula of step width h.

Solution: For f sufficiently smooth, we get an asymptotic expansion of the form

Th[f ] = I + c2h
2 +O(h4) and Th/2[f ] = I + c2

h2

4
+O(h4),

where I is the exact value of the integral. We now combine both terms linearly such that the terms
with order h4 cancel out. Set T00 = Th[f ] and T10 = Th/2[f ]. Then we get

(8.3c) What is the asymptotic behaviour of the error of the new method?

Solution:

Problem 8.4 Chebychev Polynomials
In this problem you will meet a special set of polynomials that form a basis for the spaces Pn−1
of polynomials of degree < n, n ∈ N. With respect to an also special set of interpolation nodes
this basis has rather desirable properties.

Throughout this problem, for n ∈ N0 we set

Tn(t) := cos(n arccos(t)) , −1 ≤ t ≤ 1 ,

and for n ∈ N

Zn :=
{
xk := cos

(
(k + 1

2
)π
n

)
, k = 0, . . . , n− 1

}
. (8.4.1)

(8.4a) Read through section 3.8 of the lecture notes.

(8.4b) Show that T0(t) = 1, T1(t) = t, and

Tn+1(t) + Tn−1(t) = 2tTn(t) , n ≥ 1 , −1 ≤ t ≤ 1 . (8.4.2)
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(8.4c) Show that for n ≥ 1 the derivatives of the functions Tn satisfy the recursion

2Tn(t) =
1

n+ 1

d

dt
Tn+1(t)−

1

n− 1

d

dt
Tn−1(t) .

(8.4d) Show that Tn for n ≥ 1, is a polynomial of degree n with leading coefficient 2n−1.

(8.4e) Show that

Zn = {t ∈ R : Tn(t) = 0} .

(8.4f) Write a MATLAB function

function y = evalT(n,t)

that computes yi := Tn(ti), n ∈ N0, for arguments ti, i = 1, . . . ,m, passed in the row vector t.
No special functions like cos and its inverse must be used.

The results are to be returned in the row vector y. What is the asymptotic computational effort of
evalT for n→∞ and m→∞?

HINT: Use the recursion formula (8.4.2) for Tn.

(8.4g) We consider the interpolation problem with V = Pn−1 and set of interpolation points
Zn.

Let A ∈ Rn×n be the interpolation matrix for the basis B = {T0, T1, . . . , Tn−1} of V (i.e. the
(j + 1)th column of A equals (Tj(x0), . . . , Tj(xn−1))

>. Show that there is a regular diagonal
matrix D such that AD is an orthogonal matrix.

(8.4h) Using the result of subproblem (8.4g), write an efficient (in terms of computational effort
and memory!) MATLAB function

function c = chebcoeff(y)

that computes the coefficients cj , j = 0, . . . , n− 1, in the representation

p(t) =
n−1∑
j=0

cjTj(t)

of the polynomial interpolant p ∈ Pn−1 through the points (xi, yi), i = 0, . . . , n − 1, where the
nodes xi are defined in (8.4.1). The data yi are passed in the row vector y, and the coefficients
are returned in the row vector c.

(8.4i) Based on (8.4.2) write a MATLAB function

function y = chebsum(c,t)
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that computes

yi =
n−1∑
j=0

cjTj(ti)

for i = 1, . . . ,m. The values ti are the components of the row vector t, and the values yi are
made available in the row vector y.

What is the asymptotic computational effort of chebsum for n→∞ and m→∞?

Published on April 21, 2016.
To be submitted on May 3, 2016.
MATLAB: Submit all files in the online system. Include the files that generate the
plots. Label all your plots. Include commands to run your functions. Comment
on your results.
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