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Problem 9.1 Composite Trapezoidal Rule with Non-Uniform Grid
By using a grid with a non-uniform stepsize it may be possible to achieve a higher quality ap-
proximation for integrals where the integrand is smooth but problematic at certain points. Let
f(x) =

√
x and note that it is not continuously differentiable in [0, 1]. We first consider a grid

with uniform stepsize h = N−1.

(9.1a) Show that the following error estimate holds∣∣∣∣∫ 1

0

f(x) dx−Q(1)
[0,1][f ]

∣∣∣∣ 6 Ch
3
2 ,

where Q(1)
[0,1][·] denotes the composite Trapezoidal rule.

Solution: We have

I[0,1][f ] =
N∑
j=1

I[xj−1,xj ][f ] = I[0, 1
N
][f ] +

N∑
j=2

I[xj−1,xj ][f ].

Define I(1) = I[0, 1
N
][
√
x] and I(2) =

∑N
j=2 I[xj−1,xj ][

√
x].

First we estimate the error due to I(2). For each of the subintervals in I(2) we have that
√
x ∈

C2([xj−1, xj]). Therefore, applying Theorem 4.2, for j = 2, . . . , N we have that for some ξ ∈
[xj−1, xj]

where we have used the fact that the maximum of |f ′′(ξ)| occurs at the left endpoint for ξ ∈
[xj−1, xj] due to the monotonicity of |f ′′(ξ)| =

∣∣∣14ξ− 3
2

∣∣∣. Summing the contribution to the error
from each of the subintervals we have∣∣∣∣∣

N∑
j=2

(I[xj−1,xj ][f ]−Q
(1)
[xj−1,xj ]

[f ])

∣∣∣∣∣ ≤
N∑
j=2

∣∣∣I[xj−1,xj ][f ]−Q
(1)
[xj−1,xj ]

[f ]
∣∣∣

≤
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Regarding the I(1) term,
√
x is not differentiable at x = 0 and so

√
x /∈ C2([0, h]). As we can’t

use the estimate in Theorem 4.2, we calculate the error directly as follows∣∣∣I[0,h][f ]−Q(1)
[0,h][f ]

∣∣∣ = ∣∣∣∣∫ h

0

√
xdx−Q[0,h][f ]

∣∣∣∣ =

Summing I(1) and I(2) we obtain the upper bound error estimate of Ch
3
2 .

(9.1b) Letting x0 = 0, propose a selection of {xj}N1 such that∣∣∣I[xj−1,xj ][f ]−Q
(1)
[xj−1,xj ]

[f ]
∣∣∣ 6 CN−2.

HINT: Choose xj = ( j
N
)β for some β > 1 to equilibrate all∣∣∣I[xj−1,xj ][f ]−Q

(1)
[xj−1,xj ]

[f ]
∣∣∣,

such that the undesirable effect on the error estimate due to
√
x not being differentiable at the left

endpoint of the first subinterval is compensated for.

Solution:

I[0,1][f ] = I[0,x1][f ] +
N∑
j=2

I[xj−1,xj ][f ].

Define I(1) = I[0,x1][
√
x] and I(2) =

∑N
j=2 I[xj−1,xj ][

√
x]. For each of the subintervals in I(2) we

have that
√
x ∈ C2([xj−1, xj]). Therefore, applying Theorem 4.2, for j = 2, . . . , N we have that
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Let xj = ( j
N
)β and g(x) = ( x

N
)β . Taking the derivative of g(x) gives

g′(x) = β

(
x

N

)β−1
· 1
N

Therefore

|xj − xj−1| =

So taking the sum over all the subintervals we have∣∣∣∣∣
N∑
j=2

(I[xj−1,xj ][f ]−Q
(1)
[xj−1,xj ]

[f ])

∣∣∣∣∣ 6
N∑
j=2

∣∣∣I[xj−1,xj ][f ]−Q
(1)
[xj−1,xj ]

[f ]
∣∣∣ = N∑

j=2

∣∣∣∣−(xj − xj−1)3

12
f ′′(ξ)

∣∣∣∣
≤

Note that supj>2(
j−1
j
)−

3
2 6 2

3
2 as j−1

j
∈ [1

2
, 1] ∀ j > 2. Therefore the previous expression is
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Again, noting the issue at the left endpoint of the first subinterval, we calculate the error for the
I(1) term directly

Summing I(1) and I(2) we obtain the upper bound error estimate of CN−2.

Problem 9.2 Quadrature Rule Based on Interpolation
Let f ∈ C(R) be bounded. We want to calculate I[−1,1][f ] =

∫ 1

−1 f(x) dx using a quadrature rule
based on interpolation.

(9.2a) Define a quadrature rule based on interpolation Qx0
[−1,1][f ] =

∑2
i=0wif(xi) with the

sampling points x1 = −1 as well as x2 = 1 and the variable parameter x0 < −1, which integrates
all polynomials p ∈ Pn with n ∈ N as big as possible exactly. In order to do this deduce the
weights

w0(x0) = −
4

3(−1 + x0)(1 + x0)
, w1(x0) =

1 + 3x0
3(1 + x0)

, w2(x0) =
−1 + 3x0
3(−1 + x0)

.

Problem Sheet 9 Page 4 Problem 9.2



What quadrature rule do you get? What is the degree of your quadrature rule? What is the sign
of the weights for x0 < −1?

Solution: The rule is of form Q[f ] = w0(x0)f(x0) +w1(x0)f(x1) +w2(x0)f(x2). The weights
can be determined by solving the following equations

w0 + w1 + w2 =

∫ 1

−1
1 dx = 2

By using Gaussian elimination and back-substitution we can calculate the results given in the
task.

(9.2b) Determine the condition of the quadrature rule depending on x0. How does the condition
behave for x0 → −∞, resp. x0 ↗ −1?

Solution: The condition of the quadrature rule is the smallest number κ > 0, for which the
following holds

|Q[f ]−Q[g]| ≤ κ‖f − g‖∞ ∀ f, g ∈ C0(R).

We observe:

|Q[f ]−Q[g]| = |w0(f(x0)− g(x0)) + w1(f(x1)− g(x1)) + w2(f(x2)− g(x2))| ≤

therefore κ = |w0|+ |w1|+ |w2|. In this case we have
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For x0 → −∞ we observe the following behaviour

For x0 ↗ −1 we observe the following behaviour

(9.2c) Estimate the roundoff error when usingQx0
[−1,1][f ] in floating-point arithmetic F(10, 6,−10, 10),

if x0 = −1− 10−6. Assume that we can evaluate f exactly up to machine precision.

Solution: In a finite floating-point arithmetic we do not evaluate the exact function f , but
an approximation f̃ . If we assume that we can evaluate f exactly up to machine precision in
F(β, t, emin, emax), we have

∥∥f − f̃∥∥∞ ≤ 1
2
β1−t with the Unit Roundoff 1

2
β1−t. Using the condi-

tion we get an estimate of the roundoff error

(9.2d) Write a MATLAB-script quadrature.m, that calculatesQx0
[−1,1][f ] for f(x) = π

4
cos(π

4
x+

π
4
), where x0 = −1 − 10−k, k = 1, 2, . . . , 20. Display the behaviour of Qx0

[−1,1][f ] graphically
depending on k and explain the result.

Solution:

0 2 4 6 8 10 12 14 16 18 20
1.046

1.048

1.05

1.052

1.054

1.056

1.058

1.06

1.062

1.064

1.066

k

Q
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(9.2e) Let x0 = −10k, k = 2, 3, . . .. Determine the quadrature rule Qx0→−∞
[−1,1] [f ] for the limit

k →∞.

Solution:

Problem 9.3 Romberg Extrapolation
(9.3a) Implement a MATLAB function RombergExtr(f,a,b,m) which computes the ex-
trapolation table associated with Romberg scheme for I[f ] =

∫ b
a
f(x) dx as in [NMI, Sect. 4.3.3]

and with h = (b− a)/2.

HINT: Use the routine trapez.m in [NMI, Sect. 4.2].

(9.3b) Implement a MATLAB function

ErrConv(f,a,b,m,Iref)

to compute the error of the Romberg extrapolation applied to I[f ] =
∫ b
a
f(x) dx with respect to

the analytical value Iref of the integral I[f ]. Use the implementation derived in (9.3a). For
the ith-column of the Romberg table (i = 0, . . . ,m), plot the error vs H = 2−ih and determine
numerically the convergence order. Explain the results you obtain for f = sin(x), a = 0, b = π
and m = 10.

HINT: Compare with the plots in [NMI, Sect. 4.2].

(9.3c) Repeat the numerical analysis performed in (9.3b) for I[f ] =
∫ 1

0

√
x dx. What can you

observe? Compare with the results in (9.3b).

Problem 9.4 Gauss Quadrature rule for non constant weight
Determine the unique Gauss quadrature formula that has points x0, x1 ∈ [−1, 1] and weights
A,B ∈ R for the quadrature rule∫ 1

−1

1√
1− x2

f(x) dx ≈ Af(x0) +Bf(x1)

such that the formula has the highest possible degree. What is that degree?

HINT: The integrand is invariant under x→ −x so we look for symmetric points x0, x1.
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Problem 9.5 Adaptive Quadrature
In Section 4.2 in NMI 4 we saw how to construct so-called composite quadrature rules based
on partition (grid) of the integration interval. In class we did not discuss how to obtain such
partitions and all examples used equidistant grids. However, often for a prescribed number of
function evaluations a massive reduction of the quadrature error can be achieved by choosing
a non-equidistant grid by taking into account features of the integrand. This can even be done
automatically, based on a posteriori error estimation, as is demonstrated in this problem.

(9.5a) Implement a MATLAB-function

Qn = simpson(a,b,n,f)

that computes the integral
∫ b
a
f(x) dx using the composite Simpson rule Q1/n[f ] on n intervals of

the same size. The function takes as input the function handle f which, in turn, requires a single
scalar argument.

Solution:

(9.5b) Implement an adaptive composite Simpson rule

Qval = adaptiveSimpson rec(a,b,f,tol)

according to the algorithm described below. It improves the grid adaptively, if the estimated error
on an interval is greater than the (absolute) tolerance tol. The following strategy governs the
refinement of the grid:

Adaptive grid refinement for composite Simpson rule: Assume you are given an interval [a, b]
of length h = b− a, the tolerance tol and the function f as a function handle.

i. Estimate the error of integration by using err = |Qh[f ]−Lh/2[f ]|, whereQh[f ] is the value
produced by the Simpson rule and

Lh/2[f ] = Qh[f ] +
Qh/2[f ]−Qh[f ]

15

denotes the so-called extrapolated Simpson’s rule.

ii. Terminate if err ≤ tol. Then the approximation Lh/2[f ] is regarded as good enough and is
returned as the approximate value Qval of the integral

∫ b
a
f(x) dx.

iii. Otherwise subdivide [a, b] into two subintervals of the same length and recursively call
adaptiveSimpson rec on the new intervals with half the value for the tolerance tol.
The sum of the returned values is used as Qval then.

Solution:
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(9.5c) What is the minimal number of function evaluations required to compute the value re-
turned by adaptiveSimpson rec(a,b,f,tol) from sub-problem (9.5b), if it is known
that K ∈ N0 recursive calls to this function have been made.

Solution:

(9.5d) Implement a MATLAB function

Qval = adaptiveSimpson(a,b,fa,fm,fb,f,tol)

that, given the values fa = f(a), fm = f((a+ b)/2) and fb = f(b), computes the same approx-
imate value for the integral

∫ b
a
f(x) dx as adaptiveSimpson rec(a,b,f,tol) using the

minimal number of f -evaluations found in subproblem (9.5c).

Solution:

(9.5e) For the function f(x) = 1/(10−4 + x2) we compare the convergence of the equidistant
composite Simpson rule and of the adaptive composite Simpson rule from subproblem (9.5d) on
the interval [0, 1]. Create a doubly logarithmic plot of the quadrature error versus the number of
point evaluations for both quadrature rules.

HINT:

• The exact value of the integral is
∫ 1

0
f(x) dx = 102arctan(102).

• The equidistant composite Simpson rule should be used with 1, . . . , 1000 grid intervals.

• The adaptive quadrature rule should be applied with the values 0.7`, ` = 1, . . . , 100 for the
tolerance tol.

• To count the number of function evaluations in adaptiveSimpson use a global variable.
Obtain information about the use of the global keyword from the MATLAB documenta-
tion.

Solution:

Listing 9.1: Solution for subproblem (9.5e)
1 c l e a r a l l
2

3 g l o b a l count
4

5 f = @(x) 1./(1e-4 + x.ˆ2);
6 a = 0; b = 1;
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7 neq = 1000; nad = 100;
8 % Exact integral value

9 Qex = 100*atan(100);
10

11 % Equidistant composite Simpson rule

12 % TODO

13

14 % Adaptive composite Simpson rule

15 % TODO

16

17 f i g u r e()
18 l o g l o g(ceq, err, ’--k’, cad, errAd, ’-r’);
19 l egend(’Equidistant Simpson’, ’Adaptive Simpson’);
20 x l a b e l(’Number of function evaluations’);
21 y l a b e l(’Error of Quadrature’);
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Figure 9.1: Error of quadrature

The adaptive quadrature formula reaches a smaller error on the same amount of subintervals.
Since the number of subintervals is proportional to the number of evaluations of the function, we
can call the adaptive quadrature more efficient (the overhead costs induced by the error estimation
and the recursion are neglected).

Published on April 28, 2015.
To be submitted on May 10, 2015.
MATLAB: Submit all files in the online system. Include the files that generate the
plots. Label all your plots. Include commands to run your functions. Comment
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on your results.
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