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Problem 11.1 Identification of Zeros
Consider

f(x) = exp(2x)− sin(x)− 2.

(11.1a) One example of a fixed point equation to determine the zeros of f is f(x) + x = x.
Find two further fixed-point equations to determine the zeros of f(x).

Solution:

(11.1b) Do your proposed maps Φ1,Φ2 satisfy the conditions of the Banach fixed-point theo-
rem? Show that f(x) has a unique real zero.

Solution: We verify the conditions of Banach’s fixed-point theorem on a yet to be determinted
interval I .

We are able to show that Φ′1(x) > 1 ∀x ∈ R, by transforming the equation Φ′1(x) = 1 to a
quadratic equation

2. We know max(Φ2(x)) = Φ2(π/2+2πZ) = 1
2

ln(3) and min(Φ2(x)) = Φ2(3π/2+2πZ) =
0. Therefore Φ2 is a function that maps I = [0, 1

2
ln(3)] to itself.
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Hence all the conditions of Banach’s fixed-point theorem are fulfilled on the interval I =
[0, 1

2
ln(3)]. Thus f has one unique root in this interval.

Outside of this interval f does not have any zeros since

(11.1c) Give a number n ∈ N, s.t. with the starting point x(0) := 0.1, the absolute error of
the nth iterate in determining the root of f(x) (on the fixed-point equation found in subprob-
lem (11.1b)) is less than 10−8.

Solution: From x(0) = 0.1 follows x(1) = 1
2

ln(sin(0.1) + 2) ≈ 0.3709. The a priori error
estimate in [NMI, Thm. 5.10] then states that

Problem 11.2 MATLAB: Fixed-point, Secant and Newton’s Method
A sphere with radius R = 1 and density ρ ∈ (0, 1) is swimming in water (density of water
ρW = 1). We want to figure out how deep the sphere immerses h = h(ρ).
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(11.2a) Show that if all the forces compensate then the cubic equation h3−3h2 +4ρ = 0 holds.

HINT: The weight force of the sphere must equal the buoyant force caused by the displaced
water:

mKg = ρWVKSg,

where VKS denotes the volume of the immersed part of the sphere.

(11.2b) Solve the equation by using the fixed-point iteration hk+1 =
√

(h3k + 4ρ)/3, the secant
method and Newton’s method for ρ = 0.0001, 0.05, 0.4, 0.6, 0.95, 0.9999. To do this implement
the methods in MATLAB and use h0 = R as initial value. Stop the iteration once |hk − hk−1| ≤
10−5 holds or at the latest when k = 104.

(11.2c) Explain the differences in the way the iterations converge depending on ρ.

Listing 11.1: Output for Testcalls for ??
1 Newton
2

3 Density Immersion Depth Iterations
4 0.0001 0.0115693352 10.00
5 0.0500 0.2707007243 5.00
6 0.4000 0.8658621543 3.00
7 0.6000 1.1341378457 3.00
8 0.9500 1.7292992757 5.00
9 0.9999 1.9884306648 9.00

10

11 Secant
12

13 Density Immersion Depth Iterations
14 0.0001 0.0115693352 13.00
15 0.0500 0.2707007243 7.00
16 0.4000 0.8658621544 3.00
17 0.6000 1.1341378455 3.00
18 0.9500 1.7292992719 6.00
19 0.9999 1.9884306528 12.00
20

21 Fixed-point
22

23 Density Immersion Depth Iterations
24 0.0001 0.0115693352 8.00
25 0.0500 0.2707008788 9.00
26 0.4000 0.8658652884 13.00
27 0.6000 1.1341251516 16.00
28 0.9500 1.7291918167 53.00
29 0.9999 1.9854194221 362.00

Problem 11.3 Modified Newton Method
(11.3a) Determine the order and condition of the root x? = 0 of f(x) = x4.

Solution: The multiplicity of the root is 4 since f (4) is the very first derivative that isn’t equal to
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zero when evaluated at x = 0. The condition of the root is given by the smallest κ that satisfies
|x̃?−x?| ≤ κ|f̃(x)−f(x)|, where x? denotes the root of f and x̃? denotes the root of the perturbed
function f̃ . Let’s assume that the perturbation is bounded by

|f̃(x)− f(x)| ≤ ε.

Therefore we have at x = x̃?

We use the Taylor expansion of f(x̃?) and the fact that all derivatives up to the m-the derivative
are equal to zero (in this case m = 4):

This way we do not get a constant κ, we see however that the distance between the roots becomes
bigger as m becomes greater since ε1/m is much greater than ε for a small ε. Even though the
second factor does reduce this effect, the condition of the root can get much worse. In this case
we get

(11.3b) Determine Newton’s method x 7→ Φ(x) in order to find the root x?. Show that Φ
converges for all x ∈ R. What is the order of convergence? Is the convergence quadratic?
Explain your answer.

Solution:

(11.3c) Let f ∈ C∞(R), m ∈ N and x? ∈ R with

f(x?) = f ′(x?) = · · · = f (m−1)(x?) = 0 6= f (m)(x?).

Show that:
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• We have Φ′(x?) = 1− 1/m for Newton’s method Φ considering the function f .

• The method defined by

xn+1 := Ψ(xn), n = 0, 1, . . . with Ψ :

{
U → R,
x 7→ x−m f(x)

f ′(x)

converges quadratically in a neighbourhood U of x?.

Solution: Since x? is a root of multiplicity m of f , we can denote f as

f(x) = (x− x?)mg(x) (11.3.1)

with g(x?) 6= 0. Therefore we get

• For Φ(x) = x− f(x)/f ′(x) it follows

• For Ψ(x) = x−m f(x)
f ′(x)

we have

Remark: WLOG x? = 0. In order to use [NMI, Thm. 5.9] we need continuity of

Ψ′′(x)(mg(x) + xg′(x))
3

=

= x2g′(x)2(2mg′(x) + xg′′(x)) +mg(x)2
(
2g′(x) + x

(
4g′′(x) + xg(3)(x)

))
+

+ xg(x)
(
−4mg′(x)2 − 2x2g′′(x)2 + xg′(x)

(
−3mg′′(x) + xg(3)(x)

))
in a sufficiently small neighbourhood of x?; this holds if xkg(k)(x), k = 0, 1, 2, 3 is bounded
in a neighbourhood of x? = 0. This is the case for instance if f is at least three times
continuously differentiable.
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Problem 11.4 MATLAB: Newton’s Method for the Eigenvalue Problem
Let A ∈ Rn×n have only real eigenvalues and eigenvectors. We are looking for a pair of eigen-
vector and eigenvalue (v, λ) ∈ Rn × R of A that satisfies the equation Av = λv under the
constraint that v>v = 1.

(11.4a) Formulate Newton’s method for the non-linear system of equations F(v, λ) = 0.

HINT: We can rewrite the problem in the form F(v, λ) = 0, where F : Rn × R → Rn+1. We
define

F(v, λ) =

(
Av − λv
−v>v + 1

)
.

Therefore we have that the root (v, λ) of F satisfies Av = λv and v>v = 1. If we consider that
v is real, we notice that the latter is equivalent to the normalization ‖v‖2 = 1.

(11.4b) Implement a MATLAB function

[l, T] = fixpkt(phi, v, l, tol, maxit)

that performs a fixed point iteration on the pair (v, λ)> and takes as input the Newton iteration
function phi found in subproblem (11.4a), the initial guess (v, l), the maximum number of
iterations maxit and the tolerance tol. As stopping criterion, use the distance between two
consecutive approximations for the eigenvalue. Intermediate values of the eigenvalues have to be
stored in the output vector T except for the last one l.

Test your code for:

m = 5; n = mˆ2;
A = gallery(’poisson’,m);
v = 1/2/n*ones(n,1); l = 0;
[l, T] = fixpkt(phi, v, l, 1e-10, 25)

and a suitable implementation of phi.

Listing 11.2: Test call output for subproblem (11.4b)
1 l = 2.2679
2

3 T = 0 30.2953 14.8882 6.7604 2.3736 1.1300
4 2.2555 2.2669 2.2676 2.2679 2.2679 2.2679

(11.4c) Using the function fixpkt from subproblem (11.4b), determine (numerically) the lo-
cal convergence rate of the Newton iteration from subproblem (11.4a) for the following choice of
the matrix A = Ai, i ∈ {1, 2, 3}, where

A1 =

(
1 1
0 1

)
, A2 =

(
1 0
0 10

)
, A3 =

(
1 0
0 1

)
Use as initial guess v(0) = (−1, 1)>, λ(0) = 0 and display in a semilog plot the deviation
|λk − λK |, 0 ≤ k < K. In this case K ≥ 0 is minimal, in such a way that either |λK−1 − λK | ≤
tol = 10−14 or K ≥ maxit = 25 holds. What can you infer?
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(11.4d) Prove what you have numerically observed in subproblem (11.4c): The Newton itera-
tion from subproblem (11.4a) converges locally quadratically if λ has algebraic multiplicity one.

HINT: Look at [NMI, Thm. 5.20]. Consider the geometric and algebraic multiplicity of λ and
distinguish among cases.

Published on May 17, 2016.
To be submitted on May 24, 2016.
MATLAB: Submit all files in the online system. Include the files that generate the
plots. Label all your plots. Include commands to run your functions. Comment
on your results.
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