Serie 4

1. Sei $\varphi: \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ das Spatprodukt auf \mathbb{R}^3 definiert durch

$$\varphi(u, v, w) = u \bullet (v \times w).$$

- a) Prüfe, dass φ eine Trilinearform ist.
- b) Zeige, dass

$$\varphi(u, v, w) = \det \begin{bmatrix} u & v & w \end{bmatrix}.$$

c) Allgemeiner, definiert die Determinantenabbildung

$$(v_1,\ldots,v_m)\mapsto \det \left[\begin{array}{ccc} v_1 & \ldots & v_m \end{array}\right]$$

eine m-Form auf $\mathbb{R}^m \times \cdots \times \mathbb{R}^m$?

2. Sei g ein inneres Produkt auf \mathbb{R}^2 mit Koordinatenmatrix

$$G = (g_{ij}) = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$

bezüglich der Standardbasis $\mathcal{E} = \{e_1, e_2\}$ von \mathbb{R}^2 definiert durch $G_{ij} = g_{ij} = g(e_i, e_j)$. Das Spektraltheorem besagt, dass eine Basis $\mathcal{A} = \{a_1, a_2\}$ aus Eigenvektoren von G existiert. Wir wollen diese explizit finden.

a) Die Eigenwerte von G sind die Nullstellen des charakteristischen Polynoms

$$p_G(\lambda) = \det(G - \lambda \mathbb{1}),$$

wobei $\lambda \mathbb{1}$ die Diagonalmatrix $\begin{bmatrix} \lambda \\ \lambda \end{bmatrix}$ bezeichne. Bestimme die Nullstellen λ_1 und λ_2 !

b) Da der Eigenvektor $a_i = (a_i^1, a_i^2)^T$ zum Eigenwert λ_i die Gleichung $Ga_i = \lambda_i a_i$ erfüllen muss, bekommen wir ein lineares Gleichungssystem

$$g_{11}a_i^1 + g_{12}a_i^2 = \lambda_i a_i^1 g_{21}a_i^1 + g_{22}a_i^2 = \lambda_i a_i^2.$$

Löse dieses für i = 1, 2.

- c) Zeige, dass g nach geeignerer Normierung der Basis \mathcal{A} die Koordinatenmatrix von g bezüglich \mathcal{A} die Gestalt $\mathbb{1} = (\delta_{ij})$ hat.
- 3. Gegeben sei eine Basis des \mathbb{R}^3 durch

$$\mathcal{B} = \left\{ b_1 = \begin{pmatrix} 2\\1\\0 \end{pmatrix}, b_2 = \begin{pmatrix} 1\\0\\3 \end{pmatrix}, b_3 = \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$$

bezüglich der ein inneres Produkt g orthonormal ist.

- a) Bestimme die Koordinaten von g bezüglich der Standardbasis \mathcal{E} des \mathbb{R}^3 !
- b) Sei $v \in \mathbb{R}^3$ gegeben durch $[v]_{\mathcal{E}} = \begin{pmatrix} 2 & 1 & 3 \end{pmatrix}^T$. Zeige, dass $||v||^2 = g(v, v)$ unabhängig von der Wahl der Basis ist.
- **4.** Sei $V = \operatorname{Mat}_{n \times n}(\mathbb{R})$ der Vektorraum der reellen $n \times n$ Matrizen und betrachte die Linearform

Spur:
$$V \to \mathbb{R}$$

 $m \mapsto \operatorname{Spur}(m) = m_i^i$.

Die Spur beschreibt auch eine Bilinearform auf $V \times V$ für $V = \operatorname{Mat}_{m \times m}(\mathbb{R})$ wie folgt:

$$\operatorname{Spur}_{Bil}(A, B) \mapsto \operatorname{Spur}(A^T B)$$

wobei A^T die Transpositionsmatrix von A ist.

- a) Zeige, dass $\operatorname{Spur}_{Bil}$ bilinear und symmetrisch ist, d.h. $\operatorname{Spur}_{Bil}(A,B) = \operatorname{Spur}_{Bil}(B,A)$.
- b) Sei n=2. Für $\alpha, \beta \leq 2$ bezeichne $E_{\alpha\beta}$ die Elementarmatrix definiert durch $(E_{\alpha\beta})_i^j = \delta_{i\alpha}\delta^{\beta j}$, also jene Matrix, die den Eintrag 1 in der (α, β) -Koordinate trägt und sonst nur Nullen hat. Dann definiert $\mathcal{E} = \{E_{\alpha\beta}\}$ die Standardbasis von V. Gebe die Darstellungsmatrix von Spur_{Bil} bezüglich \mathcal{E}^* an.
- c) Betrachte die Basis $\mathcal{B} = \{b_1, b_2, b_3, b_4\}$ von V, wobei

$$b_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad b_3 = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}, \quad b_4 = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Bestimme die Koordinatenmatrix von Spur_{Bil} bezüglich \mathcal{B}^* .