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Exercise Sheet 0

This exercise sheet introduces stochastic calculus for general (possibly discontinuous) semimartingales,
which will be used throughout the course.

Exercise 0-1

Let (Q,.%,(%:)i>0,P) be a filtered probability space satisfying the usual conditions. Denote by #?2
the set of all RCLL martingales which are bounded in L2, i.e, satisfy sup,~,E[M?] < co. Recall that
H? becomes a Hilbert space when endowed with the norm ||M]|| := HMOO||;2(]P). It can be shown that
HE = {M € H?: My = 0} and Hg’c := {M € H2 : M continuous} and Hg’d = (HS’C)>< = {M €
HE : E[MNy] = Oforall N € 7—[3’0} are closed linear subspaces and stable under stopping. FEach
M € H? can be uniquely decomposed as M = My + M¢ + M?, where M¢ € H(Q)’c and M¢ € H(Q)’d.
Denote the localised versions of the above spaces by H2 . ”Hg,loc, 7—[120(? and ’Hg:ffm. Each M € ’Hg’d is
called a purely discontinuous L*-bounded martingale, and it can be shown that M € H3 is in H(Q)’d if and
only if E[M2] = K[} . (AM,)?]. One can show that there exists for each M € H3 a unique adapted,
increasing, RCLL process [M] = ([M];)¢>0 null at 0 with A[M] = (AM)? and such that M? — [M] is
a uniformly integrable martingale null at 0. [M] is called the (optional) quadratic variation of M. For
L,M € HZ, the covariation of L and M is defined via polarisation by [L, M]:= {([L + M] — [L — M]).
[-, -] satisfies the natural consistency properties with respect to stopping, i.e., [L, M| = [L, M"] for each
stopping time 7 and L, M € H3, and this is used to extend the definition to L, M € ’Haloc.

(a) Let L € Ho® and M € H2?. Show that [L, M] = 0.
Hint: Show that LM is a uniformly integrable martingale and that [L, M] is continuous.

(b) Let L, M € ’Hg’loc be arbitrary. Show that

(L, M] = (L°, M) + [L4, M) = (L, M°) + Y~ AL,AM,.
0<s<-

(¢) Let N = (IVy)i>0 be a Poisson process with rate A > 0 and (Y%)r>1 a sequence of random variables
independent of N and such that the Y, are i.i.d., square-integrable with mean p and P[Y;, = 0] = 0.
Define the compensated compound Poisson process X = (Xy)i>0 by

Nt
X = ZYk — LA,
k=1

and assume about the filtration that X is a Lévy process with respect to (:#;)i>0. (This is for
instance satisfied if the filtration is generated by X.) Show that X € Hg’ﬁ)c and [X]; = 5;1 Y2
Hint: For n € N, denote by o, := inf{t > 0 : N; = n} the n-th jump time of the Poisson
process. The elementary theory of Poisson processes shows that o, is Gamma(n, A)-distributed.
In particular, E[o,] = & and Var(co,) = 15, n € IN.

Exercise 0-2

Let (Q, %, (#)i>0,P) be a filtered probability space satisfying the usual conditions. An adapted RCLL
process X = (X;)¢>o is called a semimartingale if it can be (not uniquely) decomposed as X = Xo+M+A
with M € H(Q)’IOC and A adapted, RCLL and of finite variation. (In the usual definition of a semimartingale,
M is only required to be a local martingale. However, one can show that both definitions are equivalent.)



and M9 € H>? | we set X := M¢€, and call X¢

0,loc?

Decomposing M as M = M¢ + M? with M¢ € ’HS’
the continuous local martingale part of X.

c
oc

(a) Show that X¢ is well defined, in the sense that if Xo + M + A and X, + M + A are two different
decompositions of X with M, M €, then M¢ = M¢€ P-a.s.

Hint: Use without proof that every L € ’Haloc of finite variation is in ’H(Z):fioc.

In order to define a stochastic integral with respect to a general semimartingale X, one defines — similarly
to the continuous case — first a stochastic integral for locally square-integrable martingales. To this end,
fix M € 7—[(2)7100, define

L*(M) := {H predictable : f [ H? d[M]s} < oo} ,

0

and denote by L2 (M) its localised version. One can show that for each H € L?(M), there exists a
unique element H e M of HE satisfying

[H-M,L]:/ H,d[M, L], VL€ H};.
0

H e M is called the stochastic integral of H with respect to M. It satisfies the natural consistency
properties with respect to stopping, i.e., (H e M)™ = H1( ,j® M = H e M7, and this is used to extend

the definition to H € L2 _(M).
b) Let M € H2, and H € L2 (M). Show that if M € H>S or M € H>%  then also HeM € H>¢
0,loc 0,loc 0,loc

loc 0,loc?

or HeM € H(Q)’iioc, respectively, and that in the first case H e M coincides with the stochastic integral
fd H,dM, from the course BMSC.

If A is adapted and of finite variation, denote by L(A) all predictable processes which are (path-by-path)
Lebesgue—Stieltjes integrable with respect to A. If X is a general semimartingale, set

L(X):= {H predictable : there exists a decomposition X = Xo+ M + A

such that H € L2 (M) N L(A)}7

loc

and for H € L(X), define the stochastic integral of H with respect to X by

loc

HoX::HoM—&—/HSdAS7 where X = Xo+ M + A and H € L} (M) N L(A).
0

One can show that H e X is well defined, in the sense that if Xo+ M + A and Xo+ M + A are two different

decompositions of X with H € L{ (M) N L(A) and H € L{ (M) N L(A) then H ¢ M + [  H,dA, =

loc loc
H e M+ [, H;dA,. (Moreover, one can show that our definition of L(X) coincides with the usual one,
which is beyond the scope of our course.)

(¢) Let X and Y be semimartingales. Show that Y_ € L(X).

Exercise 0-3

Let (Q, #, (F)t>0, P) be a filtered probability space satisfying the usual conditions. For a semimartingale
X, the quadratic variation of X is defined as [X]; := (X°) + Y ,<.(AX,)?, and it can be shown that

the infinite series converges P-a.s. For semimartingales X and Y, the quadratic covariation of X and Y
is defined via polarisation, and it is not difficult to check that [X,Y] = (X Y°) + > _ . AX AY.
Moreover, the product XY is again a semimartingale and satisfies the product rule

XY =XoYo+X_ oY +Y_ eX+[X,Y]



Finally, if X is a semimartingale and f : R — R is in C2, then f(X) is again a semimartingale and
satisfies Ité’s formula

(a)

£ = 1350+ [ P ax+ [ 5l

+ Y (A F(X) = f1(Xso)AX, — % f”(XS,)(AXS)2>

0<s<t
¢ ! K 1 1! c
_f(Xo)+/0 f(Xs,)dXﬁ/o S /(X ) d(xe),
+ Y0 (AF(X) - F(X)AK,).

0<s<t

Let X be a semimartingale with X, := 0. Define the process Z = (Z;):>0 by

1
Zy = exp (Xt - 2<Xc>t> H (1+ AX,)exp(—AXs).
0<s<t

Show that Z; is well defined for all ¢ > 0, that Z is a semimartingale and that it satisfies the SDE
Zy =1+ fot Zs—dX. Z is called the stochastic exponential of X and denoted by £(X).

Hint: Define the processes Y = (Yi)i>0 and A = (A)i>o by Vi = Xy — %<X6>t and A; =
[Tocs<:(1+AX,)exp(—AX,). To argue that A is a semimartingale, argue that X has only finitely
many “big” jumps (of size > 1/2, say) on each compact interval, and that for each ¢ > 0, the infinite
series D oo« (log(l + AXdgax,|<1/2}) — AXSIL“AXSKUQ}) converges, by using the inequality

|log(1 + x) — x| < 22 for |z| < 1/2. Then apply Itd’s formula to exp(Y;) and the product formula
to exp(Y;) and A;. In particular, show that

Aexp(Y:) = exp(Yi-)(exp(AX;) — 1) and AA; = A;_exp(—AX:) (1 + AX; — exp(AXy)).
You do not have to argue that the solution to the SDE dZ; = Z;_ dX; is unique.

Let X be the compensated compound Poisson process from Exercise 0-1 (c), and assume that
Y7 > —1 P-a.s. Show that there exists a compound Poisson process with drift X = (Xi)i>o0, i€,
X, = EkN;1 Yy, + vt, where the Y} are independent of N and i.i.d., and v € R, such that

E(X) = exp(X).



