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This exercise sheet introduces stochastic calculus for general (possibly discontinuous) semimartingales,
which will be used throughout the course.

Exercise 0-1

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual conditions. Denote by H2

the set of all RCLL martingales which are bounded in L2, i.e, satisfy supt≥0E[M2
t ] < ∞. Recall that

H2 becomes a Hilbert space when endowed with the norm ‖M‖ := ‖M∞‖L2(P). It can be shown that
H2

0 := {M ∈ H2 : M0 = 0} and H2,c
0 := {M ∈ H2

0 : M continuous} and H2,d
0 = (H2,c

0 )× := {M ∈
H2

0 : E[M∞N∞] = 0 for all N ∈ H2,c
0 } are closed linear subspaces and stable under stopping. Each

M ∈ H2 can be uniquely decomposed as M = M0 + M c + Md, where M c ∈ H2,c
0 and Md ∈ H2,d

0 .
Denote the localised versions of the above spaces by H2

loc, H2
0,loc, H

2,c
loc and H2,d

0,loc. Each M ∈ H2,d
0 is

called a purely discontinuous L2-bounded martingale, and it can be shown that M ∈ H2
0 is in H2,d

0 if and
only if E[M2

∞] = E[
∑
s>0(∆Ms)

2]. One can show that there exists for each M ∈ H2
0 a unique adapted,

increasing, RCLL process [M ] = ([M ]t)t≥0 null at 0 with ∆[M ] = (∆M)2 and such that M2 − [M ] is
a uniformly integrable martingale null at 0. [M ] is called the (optional) quadratic variation of M . For
L,M ∈ H2

0, the covariation of L and M is defined via polarisation by [L,M ] := 1
4 ([L+M ]− [L−M ]).

[·, ·] satisfies the natural consistency properties with respect to stopping, i.e., [L,M ]τ = [L,Mτ ] for each
stopping time τ and L,M ∈ H2

0, and this is used to extend the definition to L,M ∈ H2
0,loc.

(a) Let L ∈ H2,c
0 and M ∈ H2,d

0 . Show that [L,M ] ≡ 0.
Hint: Show that LM is a uniformly integrable martingale and that [L,M ] is continuous.

(b) Let L,M ∈ H2
0,loc be arbitrary. Show that

[L,M ] = 〈Lc,M c〉+ [Ld,Md] = 〈Lc,M c〉+
∑

0<s≤·

∆Ls∆Ms.

(c) Let N = (Nt)t≥0 be a Poisson process with rate λ > 0 and (Yk)k≥1 a sequence of random variables
independent of N and such that the Yk are i.i.d., square-integrable with mean µ and P[Yk = 0] = 0.
Define the compensated compound Poisson process X = (Xt)t≥0 by

Xt :=

Nt∑
k=1

Yk − µλt,

and assume about the filtration that X is a Lévy process with respect to (Ft)t≥0. (This is for
instance satisfied if the filtration is generated by X.) Show that X ∈ H2,d

0,loc and [X]t =
∑Nt

k=1 Y
2
k .

Hint: For n ∈ N, denote by σn := inf{t ≥ 0 : Nt = n} the n-th jump time of the Poisson
process. The elementary theory of Poisson processes shows that σn is Gamma(n, λ)-distributed.
In particular, E[σn] = n

λ and Var(σn) = n
λ2 , n ∈ N.

Exercise 0-2

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual conditions. An adapted RCLL
processX = (Xt)t≥0 is called a semimartingale if it can be (not uniquely) decomposed asX = X0+M+A
withM ∈ H2

0,loc and A adapted, RCLL and of finite variation. (In the usual definition of a semimartingale,
M is only required to be a local martingale. However, one can show that both definitions are equivalent.)



Decomposing M as M = M c + Md with M c ∈ H2,c
0,loc and Md ∈ H2,d

0,loc, we set Xc := M c, and call Xc

the continuous local martingale part of X.

(a) Show that Xc is well defined, in the sense that if X0 +M + A and X0 + M̃ + Ã are two different
decompositions of X with M, M̃ ∈, then M c = M̃ c P-a.s.
Hint: Use without proof that every L ∈ H2

0,loc of finite variation is in H2,d
0,loc.

In order to define a stochastic integral with respect to a general semimartingale X, one defines – similarly
to the continuous case – first a stochastic integral for locally square-integrable martingales. To this end,
fix M ∈ H2

0,loc, define

L2(M) :=

{
H predictable : E

[∫ ∞
0

H2
s d[M ]s

]
<∞

}
,

and denote by L2
loc(M) its localised version. One can show that for each H ∈ L2(M), there exists a

unique element H •M of H2
0 satisfying

[H •M,L] =

∫ ·
0

Hs d[M,L]s ∀L ∈ H2
0.

H • M is called the stochastic integral of H with respect to M . It satisfies the natural consistency
properties with respect to stopping, i.e., (H •M)τ = H1((0,τ ]] •M = H •Mτ , and this is used to extend
the definition to H ∈ L2

loc(M).

(b) LetM ∈ H2
0,loc and H ∈ L2

loc(M). Show that ifM ∈ H2,c
0,loc orM ∈ H

2,d
0,loc, then also H •M ∈ H2,c

0,loc

orH•M ∈ H2,d
0,loc, respectively, and that in the first caseH•M coincides with the stochastic integral∫ ·

0
Hs dMs from the course BMSC.

If A is adapted and of finite variation, denote by L(A) all predictable processes which are (path-by-path)
Lebesgue–Stieltjes integrable with respect to A. If X is a general semimartingale, set

L(X) :=
{
H predictable : there exists a decomposition X = X0 +M +A

such that H ∈ L2
loc(M) ∩ L(A)

}
,

and for H ∈ L(X), define the stochastic integral of H with respect to X by

H •X := H •M +

∫ ·
0

Hs dAs, where X = X0 +M +A and H ∈ L2
loc(M) ∩ L(A).

One can show that H •X is well defined, in the sense that if X0 +M+A and X0 +M̃+Ã are two different
decompositions of X with H ∈ L2

loc(M) ∩ L(A) and H ∈ L2
loc(M̃) ∩ L(Ã) then H •M +

∫ ·
0
Hs dAs =

H • M̃ +
∫ ·

0
Hs dÃs. (Moreover, one can show that our definition of L(X) coincides with the usual one,

which is beyond the scope of our course.)

(c) Let X and Y be semimartingales. Show that Y− ∈ L(X).

Exercise 0-3

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual conditions. For a semimartingale
X, the quadratic variation of X is defined as [X]t := 〈Xc〉 +

∑
0<s≤·(∆Xs)

2, and it can be shown that
the infinite series converges P-a.s. For semimartingales X and Y , the quadratic covariation of X and Y
is defined via polarisation, and it is not difficult to check that [X,Y ] = 〈Xc, Y c〉 +

∑
0<s≤·∆Xs∆Ys.

Moreover, the product XY is again a semimartingale and satisfies the product rule

XY = X0Y0 +X− • Y + Y− •X + [X,Y ].



Finally, if X is a semimartingale and f : R → R is in C2, then f(X) is again a semimartingale and
satisfies Itô’s formula

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−) dXs +

∫ t

0

1

2
f ′′(Xs−) d[X]s

+
∑

0<s≤t

(
∆f(Xs)− f ′(Xs−)∆Xs −

1

2
f ′′(Xs−)(∆Xs)

2
)

= f(X0) +

∫ t

0

f ′(Xs−) dXs +

∫ t

0

1

2
f ′′(Xs−) d〈Xc〉s

+
∑

0<s≤t

(
∆f(Xs)− f ′(Xs−)∆Xs

)
.

(a) Let X be a semimartingale with X0 := 0. Define the process Z = (Zt)t≥0 by

Zt := exp

(
Xt −

1

2
〈Xc〉t

) ∏
0<s≤t

(1 + ∆Xs) exp(−∆Xs).

Show that Zt is well defined for all t ≥ 0, that Z is a semimartingale and that it satisfies the SDE
Zt = 1 +

∫ t
0
Zs− dXs. Z is called the stochastic exponential of X and denoted by E(X).

Hint: Define the processes Y = (Yt)t≥0 and A = (At)t≥0 by Yt := Xt − 1
2 〈X

c〉t and At :=∏
0<s≤t(1+∆Xs) exp(−∆Xs). To argue that A is a semimartingale, argue that X has only finitely

many “big” jumps (of size ≥ 1/2, say) on each compact interval, and that for each t > 0, the infinite
series

∑
0<s≤t

(
log(1 + ∆Xs1{|∆Xs|<1/2})−∆Xs1{|∆Xs|<1/2}

)
converges, by using the inequality

| log(1 + x)− x| ≤ x2 for |x| < 1/2. Then apply Itô’s formula to exp(Yt) and the product formula
to exp(Yt) and At. In particular, show that

∆ exp(Yt) = exp(Yt−)(exp(∆Xt)− 1) and ∆At = At− exp(−∆Xt)(1 + ∆Xt − exp(∆Xt)).

You do not have to argue that the solution to the SDE dZt = Zt− dXt is unique.

(b) Let X be the compensated compound Poisson process from Exercise 0-1 (c), and assume that
Y1 > −1 P-a.s. Show that there exists a compound Poisson process with drift X̃ = (X̃t)t≥0, i.e.,
X̃t :=

∑Nt

k=1 Ỹk + νt, where the Ỹk are independent of N and i.i.d., and ν ∈ R, such that

E(X) = exp(X̃).


