ETH Zürich HS 2013 D-MATH Prof. J. Teichmann

Mathematical Finance

Exercise Sheet 2

Exercise 2-1

Let $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \in [0,T]}, \mathbb{P})$ be a filtered probability space and $\overline{S} = (1, S_t^1, \ldots, S_t^d)_{t \in [0,T]}$ a general continuous-time financial market with time horizon T > 0.

(a) Show that if there exists an arbitrage opportunity

$$\vartheta = \sum_{k=1}^{N} h^k \mathbb{1}_{[\tau_{k-1}, \tau_k]} \in \mathbf{b}\mathcal{E},$$

then there also exists a "one-step buy-and-hold" arbitrage opportunity $\vartheta^* = h \mathbb{1}_{[\sigma_0, \sigma_1]} \in \mathbf{b}\mathcal{E}$.

(b) Assume that S is a semimartingale and satisfies NA. Prove that if $\vartheta \in \Theta_{\text{adm}}$ satisfies $G_T(\vartheta) \ge -c \mathbb{P}$ -a.s. for some $c \ge 0$, then $G_{\cdot}(\vartheta) \ge -c \mathbb{P}$ -a.s.

Exercise 2-2

Let $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \in [0,T]}, \mathbb{P})$ be a filtered probability space, $S = (S^1, \ldots, S^d_t)_{t \in [0,T]}$ a *d*-dimensional semimartingale and $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_T an equivalent probability measure.

(a) Assume that Q is a separating measure for S. Show that if S is (locally) bounded, then Q is an equivalent (local) martingale measure for S.
Hint: Consider suitable simple integrands

Hint: Consider suitable simple integrands.

(b) Assume that \mathbb{Q} is an equivalent σ -martingale measure for S. Show that it is also an equivalent separating measure.

Hint: Use the Ansel-Stricker theorem.

(c) Now assume that d = 1, that $(\mathscr{F}_t)_{t \in [0,T]}$ is the natural (completed) filtration of S and that $S = (S_t)_{t \in [0,T]}$ is of the form

$$S_t = \begin{cases} 0 & \text{for } 0 \le t < T, \\ X & \text{for } t = T, \end{cases}$$

where X is normally distributed with mean $\mu \neq 0$ and variance $\sigma^2 > 0$. Show that in this case the class \mathcal{M}_{sep} of equivalent separating measures for S is strictly bigger than the class \mathcal{M}_{σ} of equivalent σ -martingale measures for S.

Hint: Describe explicitly all adapted and predictable processes for the filtration $(\mathscr{F}_t)_{t \in [0,T]}$.

Exercise 2-3

Let $(\Omega, \mathscr{F}, (\mathscr{F}_k)_{k=0,1}, \mathbb{P})$ be a filtered probability space and $\overline{S} = (1, S_k^1, \dots, S_k^d)_{k=0,1}$ a one-period model. Assume that $\mathscr{F}_0 = \{\emptyset, \Omega\}$.

(a) Show that the set

$$\mathcal{Q} := \left\{ \mathbb{Q} \approx \mathbb{P} \text{ on } \mathscr{F}_1 : \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} \text{ is bounded and } \mathbb{E}_{\mathbb{Q}}[|S_1^i|] < \infty \text{ for all } i = 1, \dots, d \right\}$$

is nonempty and convex.

(b) Define the set

$$\mathcal{C} := \{ \mathbb{E}_{\mathbb{Q}}[\Delta S_1] : \mathbb{Q} \in \mathcal{Q} \},\$$

where $\mathbb{E}_{\mathbb{Q}}[\Delta S_1]$ is a shorthand notation for the vector $(\mathbb{E}_{\mathbb{Q}}[\Delta S_1^1], \ldots, \mathbb{E}_{\mathbb{Q}}[\Delta S_1^d])^{tr}$. Show that if there exists $\vartheta \in \mathbb{R}^d$ with $\vartheta^{tr} x \ge 0$ for all $x \in \mathcal{C}$, then $\vartheta^{tr} \Delta S_1 \ge 0$ P-a.s. *Hint:* Fix $\mathbb{Q} \in \mathcal{Q}$, and for $\epsilon \in (0, 1)$, define the function

$$\varphi_{\epsilon} = \epsilon \mathbb{1}_{\{\vartheta^{tr} \Delta S_1 \ge 0\}} + (1 - \epsilon) \mathbb{1}_{\{\vartheta^{tr} \Delta S_1 < 0\}}$$

and consider the limit $\lim_{\epsilon \to 0} \mathbb{E}_{\mathbb{Q}}[\varphi_{\epsilon} \vartheta^{tr} \Delta S_1].$

(c) Show that S satisfies NA if and only if there exists $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_1 with $\frac{d\mathbb{Q}}{d\mathbb{P}}$ bounded and such that S is a Q-martingale, i.e., S^i is a Q-martingale for each $i = 1, \ldots, d$. *Hint:* For " \Rightarrow " use without proof that if \mathcal{C} is a nonempty convex subset of \mathbb{R}^d with $0 \notin \mathcal{C}$, then there exist $\vartheta \in \mathbb{R}^d$ and $x_0 \in \mathcal{C}$ such that $\vartheta^{tr} x \geq 0$ for all $x \in \mathcal{C}$ and $\vartheta^{tr} x_0 > 0$.

Exercise 2-4

Let $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \in [0,T]}, \mathbb{P})$ be a filtered probability space. For an increasing, adapted, continuous process $A = (A_t)_{t \in [0,T]}$ null at 0, define the σ -finite measure $\mathbb{P} \otimes A$ on $(\bar{\Omega}, \mathcal{P})$, where $\bar{\Omega} := \Omega \times (0,T]$ and \mathcal{P} denotes the predictable σ -field, by

$$(\mathbb{P} \otimes A)[\bar{N}] := \mathbb{E}\left[\int_0^T \mathbb{1}_{\bar{N}}(\omega, s) \,\mathrm{d}A_s\right], \quad \bar{N} \in \mathcal{P}.$$

(a) Let A^1 and A^2 be increasing, adapted, continuous processes null at 0 with $\mathbb{P} \otimes A^1 = \mathbb{P} \otimes A^2$ on $(\overline{\Omega}, \mathcal{P})$. Show that $A^1 = A^2$.

Hint: Show that $A^1 - A^2$ is a local martingale.

(b) Let B and C be increasing, adapted, continuous processes null at 0. Show that there exist a predictable process $H \in L(C)$ and $\bar{N} \in \mathcal{P}$ such that

$$B_t = \int_0^t H_s \, \mathrm{d}C_s + \int_0^t \mathbb{1}_{\bar{N}} \, \mathrm{d}B_s, \quad \text{and} \quad \int_0^t \mathbb{1}_{\bar{N}} \, \mathrm{d}C_s = 0, \quad t \in [0, T].$$

Hint: Consider the Lebesgue decomposition of $\mathbb{P} \otimes B$ with respect to $\mathbb{P} \otimes C$.

(c) Now let $S = (S_t)_{t \in [0,T]}$ be a continuous semimartingale with canonical decomposition $S = S_0 + M + A$, where $M \in \mathcal{M}^c_{0,\text{loc}}$ and A is adapted, continuous, of finite variation and null at 0. Show that if S satisfies NA for 0-admissible strategies, then there exists a predictable process $H \in L(\langle M \rangle)$ such that

$$A_t = \int_0^t H_s \,\mathrm{d} \langle M \rangle_s, \quad t \in [0,T].$$

In other words, this means that S satisfies the structure condition (SC').

Hint: Write $A = A^+ - A^-$, where A^+ and A^- are the positive and the negative variation of A, respectively, use part (b) and argue by contradiction.

Exercise 2-5

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space supporting a Brownian motion $W = (W_t)_{t \in [0,1]}$. Denote by $(\mathscr{F}_t^W)_{t \in [0,1]}$ the natural (completed) filtration of W. Let $\mu = (\mu_t)_{t \in [0,1]}$ be a predictable process with $\int_0^1 |\mu_s| \, ds < \infty$ \mathbb{P} -a.s. and $\int_0^t \mu_s^2 \, ds < \infty$ \mathbb{P} -a.s. for all $t \in (0,1)$. Define the process $S = (S_t)_{t \in [0,1]}$ by the SDE

$$\mathrm{d}S_t = S_t(\mu_t \,\mathrm{d}t + \,\mathrm{d}W_t), \quad S_0 = s_0 > 0.$$

Moreover, define the process $Z = (Z_t)_{t \in [0,1]}$ by the SDE

$$\mathrm{d}Z_t = -Z_t \mu_t \,\mathrm{d}W_t, \quad Z_0 = 1. \tag{(*)}$$

(a) Show that (*) has a unique strong solution, which is nonnegative. (Note that Z_1 can become 0.)

Hint: Use that (*) has a unique strong solution on [0, t] for fixed $t \in (0, 1)$ and that this solution has an explicit formula. Paste these solutions together and use the supermartingale convergence theorem.

- (b) Show that Z is the unique nonnegative local \mathbb{P} -martingale for the filtration $(\mathscr{F}_t^W)_{t\in[0,1]}$ with $Z_0 = 1$ such that ZS is also a local \mathbb{P} -martingale for the filtration $(\mathscr{F}_t^W)_{t\in[0,1]}$. *Hint:* Use the product formula and Itô's representation theorem.
- (c) Suppose that Z is a true martingale. Show that the process S satisfies NA. *Hint:* Define $\mathbb{Q} \ll \mathbb{P}$ on \mathscr{F}_1 by $d\mathbb{Q} := Z_1 dP$. Then show that if $\vartheta \bullet S_1 \ge 0$ P-a.s. for $\vartheta \in \Theta_{\text{adm}}$ then $\vartheta \bullet S \equiv 0$ under \mathbb{Q} and use that $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_t for all $t \in [0, 1)$.
- (d) Show that S satisfies NFLVR if and only if Z is a true martingale with the additional property that $Z_1 > 0$ P-a.s.

Hint: Use the fundamental theorem of asset pricing.

(e) Assume that $(\mu_t)_{t \in [0,1]}$ is given by $\mu_t := \frac{1}{\sqrt{1-t}} \mathbb{1}_{[0,\tau]}$, where $\tau = \inf\{t \in (0,1) : \widetilde{Z}_t = 2\} \land 1$ and where $\widetilde{Z} = (\widetilde{Z}_t)_{t \in [0,1]}$ is the unique strong solution of the SDE

$$\mathrm{d}\widetilde{Z}_t = \frac{-\widetilde{Z}_t}{\sqrt{1-t}}\,\mathrm{d}W_t, \quad \widetilde{Z}_0 = 1.$$

Using the above results, show that S satisfies NA but fails NFLVR.