ETH Zürich HS 2013 D-MATH Prof. J. Teichmann

Mathematical Finance

Exercise Sheet 4

Exercise 4-1

Let $(\Omega, \mathscr{F}, (\mathscr{F}_k)_{k=0,\dots,T}, \mathbb{P})$ be a filtered probability space with \mathscr{F}_0 \mathbb{P} -trivial and $\overline{S} = (1, S) = (1, S_k^1, \dots, S_k^d)_{k=0,\dots,T}$ a discrete-time model with finite time horizon $T \in \mathbb{N}$. Assume that S satisfies NA. Let $H = (H_k)_{k=0,\dots,T}$ be an American option and $U : [0, \infty) \to [0, \infty)$ an increasing, concave (utility) function. For $k \in \{0, \dots, T\}$, denote by $\mathcal{S}_{k,T}$ the set of all stopping times with values in $\{k, \dots, T\}$. Suppose that the buyer of the American option wants to choose a stopping time $\tau_0^* \in \mathcal{S}_{0,T}$ which is optimal in the sense that it maximises his expected utility $\mathbb{E}[U(H_{\tau})]$ from the attained payoff among all stopping times $\tau \in \mathcal{S}_{0,T}$. Assume that $\sup_{\tau \in \mathcal{S}_{0,T}} \mathbb{E}[U(H_{\tau})] < \infty$ and define the process $\overline{V} = (\overline{V}_k)_{k=0,\dots,T}$ via backward recursion by

$$\overline{V}_T := U(H_T)$$
 and $\overline{V}_k = \max\left(U(H_k), \mathbb{E}[\overline{V}_{k+1}|\mathscr{F}_k]\right), \quad k = T - 1, \dots, 0.$

Moreover, for $k \in \{0, \ldots, T\}$, define the stopping time

$$\tau_k^* := \inf\{t \in \{k, \dots, T\} : \overline{V}_t = U(H_t)\}.$$

(a) Show that for $k \in \{0, ..., T\}$, $\overline{V}^{\tau_k^*}$ is a \mathbb{P} -martingale on $\{k, ..., T\}$. Deduce that

$$\mathbb{E}[U(H_{\tau_k^*}) \mid \mathscr{F}_k] = \operatorname{ess\,sup}_{\tau \in \mathcal{S}_{k,T}} \mathbb{E}[U(H_{\tau}) \mid \mathscr{F}_k] \quad \mathbb{P}\text{-a.s.}, \quad k = 0, \dots, T.$$

Hint: Use the identity $\overline{V}_k = \operatorname{ess\,sup}_{\tau \in S_{k,T}} \mathbb{E}[U(H_{\tau}) \mid \mathscr{F}_k]$ P-a.s. for $k = 0, \ldots, T$ from the lecture.

(b) Suppose now that the market S is complete and that \mathbb{P} is the unique martingale measure for S. Show that there exists a predictable process $\vartheta = (\vartheta_k^1, \ldots, \vartheta_k^d)_{k=1,\ldots,T}$ such that

$$\overline{V}_0 + \vartheta \bullet S_{\tau_0^*} = U(H_{\tau_0^*})$$
 P-a.s.

Exercise 4-2

Let $(\Omega, \mathscr{F}, (\mathscr{F}_k)_{k=0,...,T}, \mathbb{P})$ be a filtered probability space with \mathscr{F}_0 \mathbb{P} -trivial and $\overline{S} = (1, S) = (1, S_k^1, \ldots, S_k^d)_{k=0,...,T}$ a discrete-time model with time horizon $T \in \mathbb{N}$. Assume that S satisfies NA and that the market S is complete, i.e., there exists a unique equivalent martingale measure $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_T for S. For $k \in \{0, \ldots, T\}$, denote by $\mathcal{S}_{k,T}$ the set of all stopping times with values in $\{k, \ldots, T\}$. Let $(H_k)_{k=0,\ldots,T}$ be an American option, which is uniformly bounded. Assume that the American option is traded at time 0 at a price of $S_0^H \geq 0$. We say that there is a *buyer arbitrage* for H if there exist a predictable process $\vartheta = (\vartheta_k^1, \ldots, \vartheta_k^d)_{k=1,\ldots,T}$, a constant c > 0 and a stopping time $\tau \in \mathcal{S}_{0,T}$ such that

$$\vartheta \bullet S_{\tau} + c(H_{\tau} - S_0^H) \ge 0 \quad \mathbb{P}\text{-a.s.} \quad \text{and} \quad \mathbb{P}[\vartheta \bullet S_{\tau} + c(H_{\tau} - S_0^H) > 0] > 0.$$

Similarly, we say that there is a *seller arbitrage* for H if there exist a predictable process $\vartheta = (\vartheta_k^1, \ldots, \vartheta_k^d)_{k=1,\ldots,T}$ and a constant c < 0 such that for all stopping times $\tau \in \mathcal{S}_{0,T}$,

$$\vartheta \bullet S_{\tau} + c(H_{\tau} - S_0^H) \ge 0 \quad \mathbb{P}\text{-a.s.} \quad \text{and} \quad \mathbb{P}[\vartheta \bullet S_{\tau} + c(H_{\tau} - S_0^H) > 0] > 0.$$

We say that S_0^H is an *arbitrage-free price* for the American option if there exists neither a buyer nor a seller arbitrage for H.

- (a) Show that there exists a buyer arbitrage for H if and only if $S_0^H < \sup_{\tau \in \mathcal{S}_{0,T}} \mathbb{E}_{\mathbb{Q}}[H_{\tau}]$. *Hint:* For " \Leftarrow ", use Exercise 4-1 (b).
- (b) Show that there exists a seller arbitrage for H if and only if $S_0^H > \sup_{\tau \in S_0} \mathbb{E}_{\mathbb{Q}}[H_{\tau}]$.

Remark: The above results show that $\sup_{\tau \in S_0 | \tau} \mathbb{E}_{\mathbb{Q}}[H_{\tau}]$ is the unique arbitrage-free price for H.

Exercise 4-3

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a filtered probability space supporting a Brownian motion $W = (W_t)_{t\geq 0}$. Denote by $(\mathscr{F}_t^W)_{t\geq 0}$ the natural completed filtration of W. Let $\sigma > 0$ and $0 < r < \frac{\sigma^2}{2}$. Consider an *undiscounted* Black-Scholes-type market $(\widetilde{S}^0, \widetilde{S}^1) = (\widetilde{S}_t^0, \widetilde{S}_t^1)_{t\geq 0}$ given by the SDEs

$$\mathrm{d}\widetilde{S}_t^0 = r\widetilde{S}_t^0\,\mathrm{d}t, \quad \widetilde{S}_0^0 = 1, \quad \text{and} \quad \mathrm{d}\widetilde{S}_t^1 = \widetilde{S}_t^1(r\,\mathrm{d}t + \sigma\,\mathrm{d}W_t), \quad \widetilde{S}_0^1 = s > 0.$$

Denote by $S^1 := \frac{\widetilde{S}^1}{\widetilde{S}^0}$ the discounted stock price. Then \mathbb{P} is the unique equivalent (local) martingale measure for S^1 . Denote by $\mathcal{S}_{0,\infty}$ the set of all \mathbb{P} -a.s. finite stopping times. The arbitrage-free price of a *perpetual American put option* on \widetilde{S}^1 with strike K > 0 is given by

$$v(s) := \sup_{\tau \in \mathcal{S}_{0,\infty}} \mathbb{E}\left[\frac{(K - \widetilde{S}_{\tau}^{1})^{+}}{\widetilde{S}_{\tau}^{0}}\right].$$

(a) For $L \in (0, K)$ define the stopping time

$$\tau_L := \inf\{t \ge 0 : S_t \le L\}$$

and set

$$v_L(s) = \mathbb{E}\left[\frac{(K - \widetilde{S}^1_{\tau_L})^+}{\widetilde{S}^0_{\tau_L}}\right].$$

Show that

$$v_L(s) = \begin{cases} K - s, & 0 < s \le L, \\ (K - L) \left(\frac{s}{L}\right)^{-\frac{2r}{\sigma^2}}, & s > L. \end{cases}$$

Hint: Use without proof that the stopping time $\sigma_{a,b} := \inf\{t \ge 0 : W_t \le -a + bt\}$, where a, b > 0, has the Laplace transform

$$\mathbb{E}[\exp(-\lambda\sigma_{a,b})] = \exp\left(-a(\sqrt{b^2 + 2\lambda} - b)\right), \quad \lambda \ge 0.$$

(b) Show that there exists a unique $L^* \in (0, K)$ such that $v_{L^*}(s) \ge v_L(s)$ for all $L \in (0, K)$ and all $s \in (0, \infty)$. In particular, show that $v_{L^*}(s) \ge (K - s)^+$ for all $s \in (0, \infty)$.

Hint: Define the function $g: (0, K) \to (0, \infty)$ by $g(L) := (K - L)L^{\frac{2r}{\sigma^2}}$, and show that it has a unique global maximum L^* on (0, K). In addition, for $L \in (0, K)$, define the function $h_L: (0, \infty) \to (0, \infty)$ by $h_L(s) = s^{-\frac{2r}{\sigma^2}}g(L)$, show that $h_{L^*}(L^*) = K - L^*$ and $h'_{L^*}(L^*) = -1$, and use that h_L is strictly convex for all $L \in (0, K)$.

(c) Show that the process $\widetilde{V} = (\widetilde{V}_t)_{t\geq 0}$ defined by $\widetilde{V}_t := \exp(-rt)v_{L^*}(\widetilde{S}_t), t \geq 0$, is a P-supermartingale. Deduce that τ_{L^*} satisfies

$$\mathbb{E}\left[\frac{(K-\widetilde{S}_{\tau_{L^*}}^1)^+}{\widetilde{S}_{\tau_{L^*}}^0}\right] = \sup_{\tau \in \mathcal{S}_{0,\infty}} \mathbb{E}\left[\frac{(K-\widetilde{S}_{\tau}^1)^+}{\widetilde{S}_{\tau}^0}\right]$$

Hint: First, show that v_{L^*} is in $C^1((0,\infty)) \cap C^2((0,\infty) \setminus \{L^*\})$ and satisfies

$$-rv_{L^*}(s) + rsv'_{L^*}(s) + \frac{1}{2}\sigma^2 s^2 v''_{L^*}(s) \le 0, \quad s \in (0,\infty) \setminus \{L^*\}.$$

Next, use without proof that if S is a strictly positive semimartingale and $f:(0,\infty) \to \mathbb{R}$ is in $C^1((0,\infty))$ and there exists a *finite* set $A \subset (0,\infty)$ such that $f \in C^2((0,\infty) \setminus A)$ and $f'' \mathbb{1}_{\{f \notin A\}}$ is *bounded* on compact sets, then f(S) is again a semimartingale and Itô's formula holds with f'' replaced by $f'' \mathbb{1}_{\{f \notin A\}}$.

Exercise 4-4

Let $(\Omega, \mathscr{F}, (\mathscr{F}_k)_{k=0,1}, \mathbb{P})$ be a filtered probability space and $\overline{S} = (1, S_k^1, \dots, S_k^d)_{k=0,1}$ a one-period model. Assume that $\mathscr{F}_0 = \{\emptyset, \Omega\}$ and that S is *non-redundant* in the sense that for each $\vartheta \in \mathbb{R}^d$, we have $\vartheta^{tr} \Delta S_1 = 0$ \mathbb{P} -a.s. if and only if $\vartheta = 0$. Let $U : (0, \infty) \to \mathbb{R}$ be a utility function (without Inada conditions), i.e., U is strictly increasing, strictly concave and in C^1 . Set $U(0) := \lim_{t \downarrow \downarrow 0} U(t) \in [-\infty, \infty)$ and $U(\infty) := \lim_{t \uparrow \uparrow \infty} U(t) \in (-\infty, +\infty]$. For $x \ge 0$, set

$$\mathcal{A}(x) := \{ \vartheta \in \mathbb{R}^d : x + \vartheta^{tr} \Delta S_1 \ge 0 \ \mathbb{P}\text{-a.s.} \}, \\ u(x) := \sup_{\vartheta \in \mathcal{A}(x)} \mathbb{E}[U(x + \vartheta^{tr} \Delta S_1)],$$

where $\mathbb{E}[U(x + \vartheta^{tr} \Delta S_1)] := -\infty$ if $U(x + \vartheta^{tr} \Delta S_1)^- \notin L^1(\mathbb{P})$.

- (a) Fix $x \ge 0$. Show that the set $\mathcal{A}(x)$ is compact if and only if S satisfies NA.
 - *Hint:* For " \Leftarrow ", argue by contradiction and assume that there exists a sequence $(\vartheta_n)_{n \in \mathbb{N}}$ in $\mathcal{A}(x) \setminus \{0\}$ such that $\lim_{n \to \infty} \|\vartheta_n\|_{\infty} = +\infty$. For $n \in \mathbb{N}$, set $\eta_n := \frac{\vartheta_n}{\|\vartheta_n\|_{\infty}}$, consider the sequence $(\eta_n)_{n \in \mathbb{N}}$ and use non-redundancy of S.

- (b) Suppose that Sⁱ₁ ∈ L¹(ℙ) for i ∈ {1,...,d} and U(∞) = +∞. Fix x > 0. Show that u(x) < ∞ if and only if S satisfies NA. *Hint:* For "⇐", construct Y ∈ L¹(ℙ) such that U(x + ϑ^{tr}ΔS₁) ≤ Y ℙ-a.s. for all ϑ ∈ A(x) using concavity of U and part (a).
- (c) Suppose that $S_1^i \in L^1(\mathbb{P})$ for $i \in \{1, \ldots, d\}$ and that S satisfies NA. Fix x > 0. Show that there is a unique $\vartheta^* \in \mathcal{A}(x)$ such that

$$\mathbb{E}[U(x + (\vartheta^*)^{tr} \Delta S_1)] = u(x) < \infty.$$

Hint: Use parts (a) and (b) and Fatou's lemma. Moreover, use without proof that U is strictly concave on $[0, \infty)$ in case that $U(0) > -\infty$.

Exercise 4-5

Consider the same setup and notation as in Exercise 4-4. Assume that $U(0) > -\infty$, that S satisfies NA and that $S_1^i \in L^1(\mathbb{P})$ for $i \in \{1, \ldots, d\}$. Fix x > 0 and assume that the unique $\vartheta^* \in \mathcal{A}(x)$ satisfying $\mathbb{E}[U(x + (\vartheta^*)^{tr} \Delta S_1)] = u(x) < \infty$ is in the interior of $\mathcal{A}(x)$.

(a) Fix $z \ge 0$. Using only the concavity property, show that the function

$$y \mapsto \frac{U(y) - U(z)}{y - z}, \quad y \in (0, \infty) \setminus \{z\},$$

is decreasing.

Remark: This shows in particular that $U'(0) := \lim_{h \downarrow 0} \frac{U(h) - U(0)}{h} \in (0, +\infty]$ is well defined.

(b) Show that $U'(x + (\vartheta^*)^{tr}\Delta S_1) < \infty$ P-a.s., that

 $U'\left(x+(\vartheta^*)^{tr}\Delta S_1\right)\Delta S_1^i\in L^1(\mathbb{P}), \quad i\in\{1,\ldots,d\},$

and derive the first-order condition

$$\mathbb{E}[U'(x+(\vartheta^*)^{tr}\Delta S_1)\Delta S_1^i]=0, \quad i\in\{1,\ldots,d\}.$$

Hint: Let $\eta \in \mathbb{R}^d \setminus \{0\}$, and consider the limit

$$\lim_{\epsilon \downarrow \downarrow 0} \frac{U(x + (\vartheta^* + \epsilon \eta)^{tr} \Delta S_1) - U(x + (\vartheta^*)^{tr} \Delta S_1)}{\epsilon}$$

using part (a).

(c) Show that there exists an equivalent martingale measure $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_1 for S with density

$$\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} = \frac{U'(x + (\vartheta^*)^{tr} \Delta S_1)}{\mathbb{E}[U'(x + (\vartheta^*)^{tr} \Delta S_1)]}$$

Remark: The above result is a constructive proof of the Dalang-Morton-Willinger theorem in our setup.