Mathematical Finance

Exercise Sheet 5

Exercise 5-1

Let $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a filtered probability space with $\mathscr{F}_{0} \mathbb{P}$-trivial and $\left(\mathscr{F}_{t}\right)_{t \in[0, T]}$ satisfying the usual conditions, and let $S=\left(S_{t}^{1}, \ldots, S_{t}^{d}\right)_{t \in[0, T]}$ be an \mathbb{R}^{d}-valued semimartingale satisfying NFLVR. For $x>0$, define the set $\mathcal{C}(x)$ as in the lecture. Moreover, let $U:(0, \infty) \rightarrow \mathbb{R}$ be an increasing and concave (utility) function, and suppose that $u(x):=\sup _{f \in \mathcal{C}(x)} \mathbb{E}[U(f)]<\infty$ for some (and hence all) $x>0$. Set $U^{+}(\mathcal{C}(x)):=\left\{U^{+}(f): f \in \mathcal{C}(x)\right\}$, and denote by $L_{+}^{0}\left(\mathscr{F}_{T} ;[0, \infty]\right)$ the space of all random variables taking values in $[0, \infty]$, endowed with the topology of convergence in probability.
(a) Fix $x>0$. Show that $\mathcal{C}(x)$ is convex and closed in $L_{+}^{0}\left(\mathscr{F}_{T} ;[0, \infty]\right)$.

Hint: If \mathcal{F}_{0} is trivial and $x>0$, then for any $f \in L_{+}^{0}\left(\mathscr{F}_{T}\right): f \in \mathcal{C}(x)$ if and only if $\mathbb{E}[f h] \leq x$ for any $h \in \mathcal{D}(1)$.
(b) Fix $x>0$. Suppose that that $U^{+}(\mathcal{C}(x))$ is uniformly integrable. Using only Lemma 6.2 in the lecture notes and part (a), show directly that there exists $f^{*} \in \mathcal{C}(x)$ such that $\mathbb{E}\left[U\left(f^{*}\right)\right]=u(x)$.
(c) Suppose now that there exist $a>0$ and $b \in(0,1)$ such that $U^{+}(x) \leq a\left(1+x^{b}\right)$ for all $x>0$ and an equivalent σ-martingale measure $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_{T} for S such that $\left(\frac{\mathrm{dQ}}{\mathrm{dP}}\right)^{-1}$ has moments of all orders. Fix $x>0$, and show that $U^{+}(\mathcal{C}(x))$ is uniformly integrable.
Hint: By using the growth assumption on U^{+}, reduce the problem to showing that $\mathcal{C}(x)$ is bounded in L^{p} with $p>1$ small enough. Then switch from \mathbb{P} - to \mathbb{Q}-expectations.

Exercise 5-2

Let $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a filtered probability space with $\mathscr{F}_{0} \mathrm{P}$-trivial and $\left(\mathscr{F}_{t}\right)_{t \in[0, T]}$ satisfying the usual conditions and let $S=\left(S_{t}^{1}, \ldots, S_{t}^{d}\right)_{t \in[0, T]}$ be an \mathbb{R}^{d}-valued semimartingale satisfying NFLVR. Assume that there exists a unique equivalent σ-martingale measure $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_{T}, i.e., the market $(1, S)$ is complete. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be a utility function as in the lecture. We assume that $u(x)<\infty$ for some (and hence all) $x \in(0, \infty)$. We do not assume, however, that $A E_{+\infty}(U)<1$. Define the functions $J, I, u, j:(0, \infty) \rightarrow \mathbb{R} \cup\{\infty\}$ and the sets $\mathcal{C}(x)$ and $\mathcal{D}(z)$, $x, z>0$, as in the lecture.
(a) Fix $z>0$. Show that

$$
h \leq z \frac{\mathrm{dQ}}{\mathrm{dP}} \mathbb{P} \text {-a.s. for all } h \in \mathcal{D}(z)
$$

where $\frac{\mathrm{dQ}}{\mathrm{dP}}$ denotes the density of \mathbb{Q} with respect to \mathbb{P} on \mathscr{F}_{T}. Deduce that

$$
j(z)=\inf _{h \in \mathcal{D}(z)} \mathbb{E}[J(h)]=\mathbb{E}\left[J\left(z \frac{\mathrm{dQ}}{\mathrm{dP}}\right)\right]
$$

where $\mathbb{E}[J(h)]:=+\infty$ if $J^{+}(h) \notin L^{1}(\mathbb{P})$.
Hint: Suppose that there is $h \in \mathcal{D}(z)$ such that $A:=\left\{h>z \frac{\mathrm{dQ}}{\mathrm{dP}}\right\}$ has $\mathbb{P}[A]>0$. Set $a:=\mathbb{Q}[A]$, and use that completeness of S is equivalent to the predictable representation property of S under \mathbb{Q} to deduce that there exists $H \in L(S)$ such that $\mathbb{1}_{A}=a+H \bullet S_{T}$.
(b) Let $z_{0}:=\inf \{z>0: j(z)<\infty\}$. Show that the function j is in $C^{1}\left(z_{0}, \infty\right)$ and satisfies

$$
j^{\prime}(z)=\mathbb{E}\left[\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}} J^{\prime}\left(z \frac{\mathrm{~d} \mathbb{Q}}{\mathrm{dP}}\right)\right], \quad z \in\left(z_{0}, \infty\right)
$$

Hint: Apply the fundamental theorem of calculus to the function $z \mapsto J\left(z \frac{\mathrm{dQ}}{\mathrm{dP}}\right)$ and take expectations.
(c) Set $x_{0}:=\lim _{z \downarrow \downarrow z_{0}}-j^{\prime}(z)$. Fix $x \in\left(0, x_{0}\right)$. Let $z_{x} \in\left(z_{0}, \infty\right)$ be the unique number such that $-j^{\prime}\left(z_{x}\right)=x$. Show that $f^{*}:=I\left(z_{x} \frac{\mathrm{dQ}}{\mathrm{dP}}\right)$ is the unique solution to the primal problem

$$
u(x)=\sup _{f \in \mathcal{C}(x)} \mathbb{E}[U(f)]
$$

Hint: Show that $f^{*} \in \mathcal{C}(x)$ using the hint in Ex 5-1 a) and part (a). Then use a Taylor expansion and the strict concavity of U in $(0, \infty)$ to argue that we have $\mathbb{E}\left[U(f)-U\left(f^{*}\right)\right] \leq 0$ for all $f \in \mathcal{C}(x)$ and that the inequality is an equality if and only if $f=f^{*} \mathbb{P}$-a.s.

Exercise 5-3

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space supporting a Brownian motion $W=\left(W_{t}\right)_{t \in[0, T]}$. Denote by $\left(\mathscr{F}_{t}^{W}\right)_{t \in[0, T]}$ the natural (completed) filtration of W. Let $\sigma>0$ and $\mu, r \in \mathbb{R}$. Consider the undiscounted Black-Scholes market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)=\left(\widetilde{S}_{t}^{0}, \widetilde{S}_{t}^{1}\right)_{t \in[0, T]}$ given by the SDEs

$$
\mathrm{d} \widetilde{S}_{t}^{0}=r \widetilde{S}_{t}^{0} \mathrm{~d} t, \quad \widetilde{S}_{0}^{0}=1, \quad \text { and } \quad \mathrm{d} \widetilde{S}_{t}^{1}=\widetilde{S}_{t}^{1}\left(\mu \mathrm{~d} t+\sigma \mathrm{d} W_{t}\right), \quad \widetilde{S}_{0}^{1}=s>0
$$

Denote by $S^{1}:=\frac{\widetilde{S}^{1}}{\widetilde{S}^{0}}$ the discounted stock price. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be defined by $U(x)=\frac{1}{\gamma} x^{\gamma}$, where $\gamma \in(-\infty, 1) \backslash\{0\}$. We consider the Merton problem of maximising expected utility from final wealth (in units of \widetilde{S}^{0}), where we use the notation from the lecture.
(a) Using Exercise 5-2 (a) show that

$$
j(z)=\frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}} \exp \left(\frac{1}{2} \frac{\gamma}{(1-\gamma)^{2}} \frac{(\mu-r)^{2}}{\sigma^{2}} T\right), \quad z \in(0, \infty) .
$$

(b) Using Exercise 5-2 (c) show that $f_{x}^{*}:=x \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_{T}$, where $R=\left(R_{t}\right)_{t \in[0, T]}$ is given by $R_{t}=W_{t}+\frac{\mu-r}{\sigma} t$, is the unique solution to the primal problem

$$
u(x)=\sup _{f \in \mathcal{C}(x)} \mathbb{E}[U(f)], \quad x \in(0, \infty)
$$

(c) Deduce that $f_{x}^{*}=V_{T}\left(x, \vartheta^{x}\right)$, where $\vartheta^{x}=\left(\vartheta_{t}^{x}\right)_{t \in[0, T]}$ is given by

$$
\vartheta_{t}^{x}=\frac{x}{S_{t}} \frac{1}{1-\gamma} \frac{\mu-r}{\sigma^{2}} \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_{t}, \quad x \in(0, \infty)
$$

and show that

$$
u(x)=\frac{x^{\gamma}}{\gamma} \exp \left(\frac{1}{2} \frac{\gamma}{1-\gamma} \frac{(\mu-r)^{2}}{\sigma^{2}} T\right), \quad x \in(0, \infty) .
$$

Exercise 5-4

Let $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \in[0, T]}, \mathbb{P}\right)$ be a filtered probability space satisfying the usual conditions and $S=\left(S_{t}\right)_{t \in[0, T]}$ a real-valued continuous semimartingale. The set of all (tradeable) numéraires is defined by

$$
\mathcal{N}:=\{1+\vartheta \bullet S: \vartheta \in L(S) \text { and } 1+\vartheta \bullet S>0 \text { P-a.s. }\} .
$$

A numéraire $N^{*} \in \mathcal{N}$ is called a numéraire portfolio if $\frac{N}{N^{*}}$ is a \mathbb{P}-supermartingale for all $N \in \mathcal{N}$.
(a) Show that if a numéraire portfolio exists, then it is unique.
(b) Show that if S satisfies the structure condition (SC), i.e., $S=S_{0}+M+\lambda \bullet\langle M\rangle$, where $M \in \mathcal{H}_{0, \text { loc }}^{2, c}$ and $\lambda \in L_{\text {loc }}^{2}(M)$, then the numéraire portfolio exists and is given by

$$
N^{*}=\mathcal{E}(\lambda \bullet S) .
$$

Hint: Show that $Z:=1 / N^{*}$ is an equivalent local martingale deflator for S, i.e., a strictly positive local \mathbb{P}-martingale with $Z_{0}=1$ such that $Z S$ is a local \mathbb{P}-martingale. Deduce that $Z(\vartheta \bullet S)$ is a local P-martingale for all $\vartheta \in L(S)$ by applying the product formula twice.

Suppose for the rest of the question that the numéraire portfolio N^{*} exists, and let $\vartheta^{*} \in L(S)$ be such that $N^{*}=1+\vartheta^{*} \bullet S$.
(c) Set $\widehat{S}^{1}:=\frac{S}{N^{*}}$ and $\widehat{S}^{2}:=\frac{1}{N^{*}}$. Show that for $i=1,2, \mathbb{P}$ is a separating measure for \widehat{S}^{i}.

Hint: Fix $i \in\{1,2\}$. For $\widehat{\vartheta}^{i} \in \Theta_{\mathrm{adm}}\left(\widehat{S}^{i}\right)$, find $a^{i}>0$ and $\widetilde{N}^{i} \in \mathcal{N}$ such that $\frac{a^{i}+\widehat{\vartheta}^{i} \bullet \widehat{S}^{i}}{a^{i}}=\frac{\widetilde{N}^{i}}{N^{*}}$ and apply the definition of the numéraire portfolio. To this end, show in a first step by using the product formula twice that if $\widehat{\vartheta}^{i} \in L\left(\widehat{S}^{i}\right)$, then there is $\vartheta^{i} \in L(S)$ such that $\widehat{\vartheta}^{i} \bullet \widehat{S}^{i}=\frac{v^{i} \bullet S}{N^{*}}$.
Remark One can also show that \mathbb{P} is a separating measure for ($\left(\widehat{S}^{1}, \widehat{S}^{2}\right.$) but this requires vector stochastic integration.
(d) Using Exercises 2-2 (a) and 3-3 (b) deduce that S satisfies the structure condition (SC).

Exercise 5-5

Consider the setup and notation of Exercise 5-4. Set

$$
\begin{equation*}
\ell:=\sup _{N \in \mathcal{N}} \mathbb{E}\left[\log N_{T}\right] \in[0, \infty], \tag{*}
\end{equation*}
$$

where $\mathbb{E}\left[\log N_{T}\right]:=-\infty$ if $\log ^{-} N_{T} \notin L^{1}(\mathbb{P})$. If $\ell<\infty$, then the unique optimiser of $(*)$, if it exists, is denoted by $N^{\log }$ and called the growth-optimal portfolio.
(a) Show that if the numéraire portfolio N^{*} exists and $\ell<\infty$, then the growth optimal portfolio exists and $N^{\log }=N^{*}$.
Hint: Use that $\log x \geq \log y+1-y / x$ for all $x, y>0$, because \log is concave.
Suppose for the rest of the question that $\ell<\infty$ and that the growth optimal portfolio $N^{\log }$ exists.
(b) Fix $N \in \mathcal{N}$. Show that

$$
\mathbb{E}\left[\frac{N_{T}}{N_{T}^{\log }}\right] \leq 1 .
$$

Hint: For $\epsilon \in(0,1)$, set $N^{\epsilon}:=\epsilon N+(1-\epsilon) N^{\log } \in \mathcal{N}$ and show that $\mathbb{E}\left[\frac{N_{T}^{\log }-N_{T}^{\epsilon}}{N_{T}^{\epsilon}}\right] \geq 0$. Then let $\epsilon \downarrow 0$.
(c) Let $0 \leq s \leq T, A \in \mathscr{F}_{s}$ and $N^{1}, N^{2} \in \mathcal{N}$ with associated $\vartheta^{1}, \vartheta^{2}$. Then the strategy of switching from N^{1} to N^{2} at time s on A is given by

$$
\widetilde{\vartheta}:=\mathbb{1}_{\llbracket 0, s \rrbracket} \vartheta^{1}+\mathbb{1}_{\rrbracket s, T \rrbracket}\left(\mathbb{1}_{A} \frac{N_{s}^{1}}{N_{s}^{2}} \vartheta^{2}+\mathbb{1}_{A^{c}} \vartheta^{1}\right) .
$$

Show that $\widetilde{\vartheta} \in L(S)$ and $\widetilde{N}:=1+\widetilde{\vartheta} \bullet S \in \mathcal{N}$ with

$$
\widetilde{N}=\mathbb{1}_{\llbracket 0, s \rrbracket} N^{1}+\mathbb{1}_{\rrbracket s, T \rrbracket}\left(\mathbb{1}_{A} \frac{N_{s}^{1}}{N_{s}^{2}} N^{2}+\mathbb{1}_{A^{c}} N^{1}\right) .
$$

(d) Deduce that the numéraire portfolio exists and that $N^{*}=N^{\log }$.

Hint: Fix $N \in \mathcal{N}$ and $0 \leq s<t \leq T$. Set $A:=\left\{\mathbb{E}\left[N_{t} / N_{t}^{\log } \mid \mathscr{F}_{s}\right]>N_{s} / N_{s}^{\log }\right\}$ and consider the numéraire \widehat{N} corresponding to the strategy of switching first from $N^{\log }$ to N at time s on A and then back to $N^{\log }$ at time t on A. Then apply part (b) to \widehat{N}.

