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Exercise 5-1

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space with F0 P-trivial and (Ft)t∈[0,T ] satisfy-
ing the usual conditions, and let S = (S1

t , . . . , S
d
t )t∈[0,T ] be an Rd-valued semimartingale satisfy-

ing NFLVR. For x > 0, define the set C(x) as in the lecture. Moreover, let U : (0,∞)→ R be an
increasing and concave (utility) function, and suppose that u(x) := supf∈C(x)E[U(f)] < ∞ for
some (and hence all) x > 0. Set U+(C(x)) := {U+(f) : f ∈ C(x)}, and denote by L0

+(FT ; [0,∞])
the space of all random variables taking values in [0,∞], endowed with the topology of conver-
gence in probability.

(a) Fix x > 0. Show that C(x) is convex and closed in L0
+(FT ; [0,∞]).

Hint: If F0 is trivial and x > 0, then for any f ∈ L0
+(FT ) : f ∈ C(x) if and only if

E[fh] ≤ x for any h ∈ D(1).

(b) Fix x > 0. Suppose that that U+(C(x)) is uniformly integrable. Using only Lemma 6.2
in the lecture notes and part (a), show directly that there exists f∗ ∈ C(x) such that
E[U(f∗)] = u(x).

(c) Suppose now that there exist a > 0 and b ∈ (0, 1) such that U+(x) ≤ a(1 + xb) for all

x > 0 and an equivalent σ-martingale measure Q ≈ P on FT for S such that
(
dQ
dP

)−1
has

moments of all orders. Fix x > 0, and show that U+(C(x)) is uniformly integrable.
Hint: By using the growth assumption on U+, reduce the problem to showing that C(x) is
bounded in Lp with p > 1 small enough. Then switch from P- to Q-expectations.



Exercise 5-2

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space with F0 P-trivial and (Ft)t∈[0,T ] satisfy-
ing the usual conditions and let S = (S1

t , . . . , S
d
t )t∈[0,T ] be an Rd-valued semimartingale satisfying

NFLVR. Assume that there exists a unique equivalent σ-martingale measure Q ≈ P on FT , i.e.,
the market (1, S) is complete. Let U : (0,∞) → R be a utility function as in the lecture. We
assume that u(x) < ∞ for some (and hence all) x ∈ (0,∞). We do not assume, however, that
AE+∞(U) < 1. Define the functions J, I, u, j : (0,∞) → R ∪ {∞} and the sets C(x) and D(z),
x, z > 0, as in the lecture.

(a) Fix z > 0. Show that

h ≤ zdQ

dP
P-a.s. for all h ∈ D(z),

where dQ
dP denotes the density of Q with respect to P on FT . Deduce that

j(z) = inf
h∈D(z)

E[J(h)] = E

[
J

(
z

dQ

dP

)]
,

where E[J(h)] := +∞ if J+(h) /∈ L1(P).

Hint: Suppose that there is h ∈ D(z) such that A := {h > z dQdP} has P[A] > 0. Set
a := Q[A], and use that completeness of S is equivalent to the predictable representation
property of S under Q to deduce that there exists H ∈ L(S) such that 1A = a+H • ST .

(b) Let z0 := inf{z > 0 : j(z) <∞}. Show that the function j is in C1(z0,∞) and satisfies

j′(z) = E

[
dQ

dP
J ′
(
z

dQ

dP

)]
, z ∈ (z0,∞).

Hint: Apply the fundamental theorem of calculus to the function z 7→ J
(
z dQdP

)
and take

expectations.

(c) Set x0 := limz↓↓z0 −j′(z). Fix x ∈ (0, x0). Let zx ∈ (z0,∞) be the unique number such
that −j′(zx) = x. Show that f∗ := I

(
zx

dQ
dP

)
is the unique solution to the primal problem

u(x) = sup
f∈C(x)

E[U(f)].

Hint: Show that f∗ ∈ C(x) using the hint in Ex 5-1 a) and part (a). Then use a Taylor
expansion and the strict concavity of U in (0,∞) to argue that we have E[U(f)−U(f∗)] ≤ 0
for all f ∈ C(x) and that the inequality is an equality if and only if f = f∗ P-a.s.

Exercise 5-3

Let (Ω,F ,P) be a probability space supporting a Brownian motion W = (Wt)t∈[0,T ]. Denote
by (FW

t )t∈[0,T ] the natural (completed) filtration of W . Let σ > 0 and µ, r ∈ R. Consider the
undiscounted Black-Scholes market (S̃0, S̃1) = (S̃0

t , S̃
1
t )t∈[0,T ] given by the SDEs

dS̃0
t = rS̃0

t dt, S̃0
0 = 1, and dS̃1

t = S̃1
t (µdt+ σ dWt), S̃1

0 = s > 0.

Denote by S1 := S̃1

S̃0
the discounted stock price. Let U : (0,∞)→ R be defined by U(x) = 1

γx
γ ,

where γ ∈ (−∞, 1) \ {0}. We consider the Merton problem of maximising expected utility from
final wealth (in units of S̃0), where we use the notation from the lecture.



(a) Using Exercise 5-2 (a) show that

j(z) =
1− γ
γ

z
− γ

1−γ exp

(
1

2

γ

(1− γ)2
(µ− r)2

σ2
T

)
, z ∈ (0,∞).

(b) Using Exercise 5-2 (c) show that f∗x := xE
(

1
1−γ

µ−r
σ R

)
T
, where R = (Rt)t∈[0,T ] is given by

Rt = Wt + µ−r
σ t, is the unique solution to the primal problem

u(x) = sup
f∈C(x)

E[U(f)], x ∈ (0,∞).

(c) Deduce that f∗x = VT (x, ϑx), where ϑx = (ϑxt )t∈[0,T ] is given by

ϑxt =
x

St

1

1− γ
µ− r
σ2
E
(

1

1− γ
µ− r
σ

R

)
t

, x ∈ (0,∞),

and show that

u(x) =
xγ

γ
exp

(
1

2

γ

1− γ
(µ− r)2

σ2
T

)
, x ∈ (0,∞).

Exercise 5-4

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space satisfying the usual conditions and
S = (St)t∈[0,T ] a real-valued continuous semimartingale. The set of all (tradeable) numéraires is
defined by

N := {1 + ϑ • S : ϑ ∈ L(S) and 1 + ϑ • S > 0 P-a.s.}.

A numéraire N∗ ∈ N is called a numéraire portfolio if N
N∗ is a P-supermartingale for all N ∈ N .

(a) Show that if a numéraire portfolio exists, then it is unique.

(b) Show that if S satisfies the structure condition (SC), i.e., S = S0 + M + λ • 〈M〉, where
M ∈ H2,c

0,loc and λ ∈ L2
loc(M), then the numéraire portfolio exists and is given by

N∗ = E(λ • S).

Hint: Show that Z := 1/N∗ is an equivalent local martingale deflator for S, i.e., a strictly
positive local P-martingale with Z0 = 1 such that ZS is a local P-martingale. Deduce that
Z(ϑ • S) is a local P-martingale for all ϑ ∈ L(S) by applying the product formula twice.

Suppose for the rest of the question that the numéraire portfolio N∗ exists, and let ϑ∗ ∈ L(S)
be such that N∗ = 1 + ϑ∗ • S.

(c) Set Ŝ1 := S
N∗ and Ŝ2 := 1

N∗ . Show that for i = 1, 2, P is a separating measure for Ŝi.

Hint: Fix i ∈ {1, 2}. For ϑ̂i ∈ Θadm(Ŝi), find ai > 0 and Ñ i ∈ N such that ai+ϑ̂i•Ŝi
ai

= Ñ i

N∗

and apply the definition of the numéraire portfolio. To this end, show in a first step by
using the product formula twice that if ϑ̂i ∈ L(Ŝi), then there is ϑi ∈ L(S) such that
ϑ̂i • Ŝi = ϑi•S

N∗ .

Remark One can also show that P is a separating measure for (Ŝ1, Ŝ2) but this requires
vector stochastic integration.

(d) Using Exercises 2-2 (a) and 3-3 (b) deduce that S satisfies the structure condition (SC).



Exercise 5-5

Consider the setup and notation of Exercise 5-4. Set

` := sup
N∈N

E [logNT ] ∈ [0,∞], (∗)

where E [logNT ] := −∞ if log−NT /∈ L1(P). If ` < ∞, then the unique optimiser of (∗), if it
exists, is denoted by N log and called the growth-optimal portfolio.

(a) Show that if the numéraire portfolioN∗ exists and ` <∞, then the growth optimal portfolio
exists and N log = N∗.
Hint: Use that log x ≥ log y + 1− y/x for all x, y > 0, because log is concave.

Suppose for the rest of the question that ` < ∞ and that the growth optimal portfolio N log

exists.

(b) Fix N ∈ N . Show that

E

[
NT

N log
T

]
≤ 1.

Hint: For ε ∈ (0, 1), set N ε := εN + (1 − ε)N log ∈ N and show that E
[
N log
T −N

ε
T

Nε
T

]
≥ 0.

Then let ε ↓ 0.

(c) Let 0 ≤ s ≤ T , A ∈ Fs and N1, N2 ∈ N with associated ϑ1, ϑ2. Then the strategy of
switching from N1 to N2 at time s on A is given by

ϑ̃ := 1J0,sKϑ
1 + 1Ks,T K

(
1A

N1
s

N2
s

ϑ2 + 1Acϑ
1

)
.

Show that ϑ̃ ∈ L(S) and Ñ := 1 + ϑ̃ • S ∈ N with

Ñ = 1J0,sKN
1 + 1Ks,T K

(
1A

N1
s

N2
s

N2 + 1AcN
1

)
.

(d) Deduce that the numéraire portfolio exists and that N∗ = N log.

Hint: Fix N ∈ N and 0 ≤ s < t ≤ T . Set A := {E[Nt/N
log
t |Fs] > Ns/N

log
s } and consider

the numéraire N̂ corresponding to the strategy of switching first from N log to N at time s
on A and then back to N log at time t on A. Then apply part (b) to N̂ .


