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Exercise 6-1

Let (Ω,F ,P) be a probability space supporting a Brownian motion W = (Wt)t∈[0,T ]. Denote
by (FW

t )t∈[0,T ] the natural (completed) filtration of W . Let σ > 0 and µ, r ∈ R. Consider the
undiscounted Black-Scholes market (S̃0, S̃1) = (S̃0

t , S̃
1
t )t∈[0,T ] given by the SDEs

dS̃0
t = rS̃0

t dt, S̃0
0 = 1, and dS̃1

t = S̃1
t (µdt+ σ dWt), S̃1

0 = s > 0.

Denote by S1 := S̃1

S̃0
the discounted stock price and by R = (Rt)t∈[0,T ] the returns process of S1,

i.e., Rt = (µ − r)t + σWt, t ∈ [0, T ]. Let U : R → R be given by U(x) = − exp(−αx), where
α > 0. Set

A := {ϑ ∈ L(S1) : ϑS1 ≥ −a for some a > 0},

i.e., the set of all strategies whose risky position ϑS1 is uniformly bounded from below. For
x ∈ R, we consider the problem of maximising expected utility from final wealth (in units of S̃0),
i.e., we seek ϑ∗x ∈ A such that

E[U(VT (x, ϑ∗x))] = sup
ϑ∈A

E[U(VT (x, ϑ))] =: u(x) <∞.

It turns out to be convenient to reformulate this problem a bit. To this end, set

A′ := {ϕ ∈ L(R) : ϕ ≥ −a for some a > 0} and V ′(x, ϕ) := x+ ϕ •R, x ∈ R, ϕ ∈ L(R).

Then u(x) = supϕ∈A′ E[U(V ′T (x, ϕ))] and ϕ∗x is an optimiser of the reformulated problem if and
only if ϑ∗x := ϕ∗x

S1 is an optimiser of the original problem. Finally, to use the tools from stochastic
optimal control, set

A′(t, ϕ) := {ψ ∈ A′ : ψ = ϕ on J0, tK}, t ∈ [0, T ], ϕ ∈ A′,
Jt,x(ϕ) := ess sup

ψ∈A′(t,ϕ)
E[U(V ′T (x, ψ)) |Ft], t ∈ [0, T ], x ∈ R, ϕ ∈ A′.

(a) Make the ansatz that there exists a real-valued function v in C1,2([0, T )×R)∩C0([0, T ]×R)
such that Jt,x(ϕ) = v(t, V ′t (x, ϕ)). Argue that v should satisfy the HJB equation

vt(t, x) + sup
ρ∈R

(
ρ(µ− r)vx(t, x) +

1

2
ρ2σ2vxx(t, x)

)
= 0, t ∈ [0, T ), x ∈ R,

v(T, x) = U(x), x ∈ R.
(∗)

Hint: Apply Itô’s formula and the martingale optimality principle.



(b) Assume that v(t, ·) is strictly concave for all t ∈ [0, T ). Use this to find a real-valued
function ρ∗ in C0([0, T )×R) such that for each t ∈ [0, T ), x ∈ R,

sup
ρ∈R

(
ρ(µ− r)vx(t, x) +

1

2
ρ2σ2vxx(t, x)

)
= ρ∗(t, x)(µ− r)vx(t, x) +

1

2
(ρ∗(t, x))2σ2vxx(t, x)

and deduce that under the strict concavity assumption, (∗) is equivalent to

0 = vt −
(µ− r)2

2σ2

(vx)2

vxx
in [0, T )×R and v(T, ·) = U(·) on R. (∗∗)

(c) Show that the ansatz of part (a) implies that v(t, x) = exp(−ax)w(t) for some real-valued
function w in C1([0, T ))∩C0([0, T ]). Use this to solve the PDE (∗∗) explicitly, and deduce
that ρ∗(t, x) = µ−r

ασ2 , t ∈ [0, T ), x ∈ R.

(d) For x ∈ R, set ϕ∗x := ϕ∗ := µ−r
ασ2 . Using without proof that indeed Jt,x(ϕ) = v(t, V ′t (x, ϕ))

for all t ∈ [0, T ], x ∈ R and ϕ ∈ A′, show that ϕ∗ is an optimiser of the reformulated
problem, and thus ϑ∗x := ϑ∗ = ϕ∗

S1 is an optimiser of the original problem.
Hint: Apply the the martingale optimality principle.

Exercise 6-2

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space and W = (Wt)t∈[0,t] a Brownian motion
for (Ft)t∈[0,T ]. Let (1, S) = (1, St)t∈[0,T ] be a Bachelier market, i.e., St = S0+µt+σWt, t ∈ [0, T ],
where σ > 0, µ ∈ R and S0 = s > 0. Then S = S0 +M + λ • 〈M〉, where M = σW and λ = µ

σ2 .
Set Θ = L2(M). We consider the particular problem of finding the optimal strategy ϑ∗ ∈ Θ such
that

E[(1− VT (0, ϑ∗))2] = inf
ϑ∈Θ

E[(1− VT (0, ϑ))2].

For t ∈ [0, T ] and y ∈ L2(Ft,P), define J1
t (y) as in the lecture and recall that

J1
t (y) = aty

2 − 2bty + ct, t ∈ [0, T ],

where a = (at)t∈[0,T ], b = (bt)t∈[0,T ] and c = (ct)t∈[0,T ] are semimartingales and satisfy the BSDEs

dat = at−

(
λ+

νat
at−

)2

d〈M〉t + νat dMt + dLat , aT = 1; (A)

dbt =

(
λ+

νat
at−

)
(λbt− + νbt ) d〈M〉t + νbt dMt + dLbt , bT = 1; (B)

dct =
(λbt− + νbt )

2

at−
d〈M〉t + dN c

t , cT = 1, (C)

where νa, νb ∈ L2
loc(M), La, Lb are local P-martingales strongly orthogonal to M , and N c is a

local P-martingale.

(a) Find a strong solution (a, νa, La, b, νb, Lb, c,N c) for the BSDEs (A) – (C).
Hint: Using that 〈M〉 is deterministic, try to find a solution such that a, b and c are
deterministic. Moreover, first solve (A) and (B) and then (C).

(b) Find a strong solution X∗ to the SDE

dX∗t =

(
λbt− + νbt

at−
−X∗t

(
λ+

νat
at−

))
dSt, X∗0 = 0,

and deduce that X∗ = ϑ∗ • S, where ϑ∗t = λE(−λ • S), t ∈ [0, T ].



(c) Show that ϑ∗ ∈ Θ = L2(M) and that it is indeed optimal.
Hint: For the first claim, argue that it suffices to show that λE(−λM) ∈ L2(M). For the
second claim, use the martingale optimality principle and calculate J1

t (Vt(0, ϑ
∗)), t ∈ [0, T ],

explicitly.

Exercise 6-3

Consider the same setup as in Exercise 6-2. We now consider an investor who wants to invest into
the market (1, S) by choosing a strategy ϑ ∈ Θ = L2(M). For ϑ ∈ Θ, denote by αϑ := E[ϑ •ST ]

the return and by βϑ :=
√

Var[ϑ • ST ] the volatility of ϑ.

(a) Let ϑ∗ = λE(−λ • S) be as in Exercise 6-2. Set α∗ := αϑ∗ and β∗ := βϑ∗ . Show that

βϑ ≥ β∗ for all ϑ ∈ Θ satisfying αϑ = α∗.

(b) Show that

αϑ ≤ βϑ

√
exp

(
µ2

σ2
T

)
− 1 for all ϑ ∈ Θ.

Moreover, show that if µ 6= 0, then for each α > 0, there exists ϑα such that

αϑα = α and
αϑα
βϑα

=

√
exp

(
µ2

σ2
T

)
− 1.

Hint: Show that α∗

β∗ :=

√
exp

(
µ2

σ2T
)
− 1.

Exercise 6-4

Let (Ω,F ,P) be a probability space, Y := L∞(F ,P) and ρ : Y → R a map. We consider
different properties/axioms for ρ:

• Monotonicity (M): ρ(Y 1) ≤ ρ(Y 2) for all Y 1, Y 2 ∈ Y with Y 1 ≥ Y 2 P-a.s.

• Translation invariance (T): ρ(Y + c) = ρ(Y )− c for all Y ∈ Y and c ∈ R.

• Subadditivity (S): ρ(Y 1 + Y 2) ≤ ρ(Y 1) + ρ(Y 2) for all Y 1, Y 2 ∈ Y.

• Positive homogeneity (PH) ρ(λY ) = λρ(Y ) for all Y ∈ Y and λ ≥ 0.

• Convexity (C): ρ(λY 1 + (1 − λ)Y 2) ≤ λρ(Y 1) + (1 − λ)ρ(Y 2) for all Y 1, Y 2 ∈ Y and
λ ∈ [0, 1].

• Quasi-convexity (QC): ρ(λY 1 +(1−λ)Y 2) ≤ max(ρ(Y 1), ρ(Y 2)) for all Y 1, Y 2 ∈ Y and
λ ∈ [0, 1].

(a) Show that if ρ satisfies (M) and (T), then ρ is Lipschitz continuous with respect to ‖ · ‖L∞ .

(b) Show that if ρ satisfies (T), then it satisfies (C) if and only if it satisfies (QC).
Hint: For “⇐”, show that Aρ := {Y ∈ Y : ρ(Y ) ≤ 0} is a convex set.

(c) Show that if ρ satisfies (M), (T), (S) and (C) and ρ(0) = 0, then it also satisfies (PH).
Hint: First, using (S) and (C) show by induction that ρ(λY ) = λρ(Y ) for all Y ∈ Y and
all rational λ > 0. Then, use part (a).



Exercise 6-5

Let (Ω,F ,P) be a probability space, Y := L1(F ,P) and α ∈ (0, 1) a fixed sensitivity parameter.
We consider the following maps Y → R:

• Value at Risk (VaRα): VaRα(Y ) := sup{y : P[Y ≤ −y] > α}.

• Average Value at Risk (AVaRα): AVaRα(Y ) := 1
α

∫ α
0 VaRu(Y ) du.

• Tail Conditional Expectation (TCEα): TCEα(Y ) := EP[−Y | − Y ≥ VaRα(Y )].

• Worst Conditional Expectation (WCEα):
WCEα(Y ) := sup{EP[−Y |A] : A ∈ F with P [A] > α}.

One can show that AVaRα admits a dual characterisation

AVaRα(Y ) = sup
Q∈Qα

EQ[−Y ], Y ∈ Y,

where
Qα :=

{
Q ∈Ma

1 :
dQ

dP
≤ 1

α
P-a.s.

}
.

Moreover, by arguing as in the lecture, one can show that both AVaRα and WCEα are coherent
risk measures on Y.

(a) Show that for all Y ∈ Y,

AVaRα(Y ) ≥WCEα(Y ) ≥ TCEα(Y ) ≥ VaRα(Y ),

and that the first two inequalities are equalities in case that Y has a continuous distribution.
Hint: For the first inequality, use the dual characterisation of AVaRα. For the second
inequality, argue that P[−Y ≥ VaRα(Y ) − ε] > α for all ε > 0. For the last statement,
use without proof that if Y has a continuous distribution FY , then there exists a random
variable U which is uniformly distributed on (0, 1) such that Y = q+

Y (U) P-a.s., where
q+
Y (u) := inf{y ∈ R : FY (y) > u}, u ∈ (0, 1), is the upper quantile function of Y .

(b) Calculate VaRα(−Y ) and AVaRα(−Y ), where Y is

(i) exponentially distributed with rate parameter λ > 0,
(ii) Pareto distributed with parameter β > 1, i.e.,

P[Y ≥ y] =

{
y−β, y ≥ 1,

1, y < 1,

(iii) lognormally distributed with parameters µ ∈ R and σ > 0.


