Mathematical Finance

Exercise Sheet 6

Exercise 6-1

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space supporting a Brownian motion $W = (W_t)_{t \in [0,T]}$. Denote by $(\mathscr{F}_t^W)_{t \in [0,T]}$ the natural (completed) filtration of W. Let $\sigma > 0$ and $\mu, r \in \mathbb{R}$. Consider the undiscounted Black-Scholes market $(\widetilde{S}^0, \widetilde{S}^1) = (\widetilde{S}_t^0, \widetilde{S}_t^1)_{t \in [0,T]}$ given by the SDEs

$$\mathrm{d} \widetilde{S}^0_t = r \widetilde{S}^0_t \, \mathrm{d} t, \quad \widetilde{S}^0_0 = 1, \quad \text{and} \quad \mathrm{d} \widetilde{S}^1_t = \widetilde{S}^1_t (\mu \, \mathrm{d} t + \sigma \, \mathrm{d} W_t), \quad \widetilde{S}^1_0 = s > 0.$$

Denote by $S^1 := \frac{\tilde{S}^1}{\tilde{S}^0}$ the discounted stock price and by $R = (R_t)_{t \in [0,T]}$ the returns process of S^1 , i.e., $R_t = (\mu - r)t + \sigma W_t$, $t \in [0,T]$. Let $U : \mathbb{R} \to \mathbb{R}$ be given by $U(x) = -\exp(-\alpha x)$, where $\alpha > 0$. Set

$$\mathcal{A} := \{ \vartheta \in L(S^1) : \vartheta S^1 \ge -a \text{ for some } a > 0 \}$$

i.e., the set of all strategies whose risky position ϑS^1 is uniformly bounded from below. For $x \in \mathbb{R}$, we consider the problem of maximising expected utility from final wealth (in units of \tilde{S}^0), i.e., we seek $\vartheta_x^* \in \mathcal{A}$ such that

$$\mathbb{E}[U(V_T(x,\vartheta_x^*))] = \sup_{\vartheta \in \mathcal{A}} \mathbb{E}[U(V_T(x,\vartheta))] =: u(x) < \infty.$$

It turns out to be convenient to reformulate this problem a bit. To this end, set

$$\mathcal{A}' := \{ \varphi \in L(R) : \varphi \ge -a \text{ for some } a > 0 \} \text{ and } V'(x, \varphi) := x + \varphi \bullet R, \quad x \in \mathbb{R}, \varphi \in L(R).$$

Then $u(x) = \sup_{\varphi \in \mathcal{A}'} \mathbb{E}[U(V'_T(x, \varphi))]$ and φ_x^* is an optimiser of the reformulated problem if and only if $\vartheta_x^* := \frac{\varphi_x^*}{S^1}$ is an optimiser of the original problem. Finally, to use the tools from stochastic optimal control, set

$$\begin{aligned} \mathcal{A}'(t,\varphi) &:= \{ \psi \in \mathcal{A}' : \psi = \varphi \text{ on } [\![0,t]\!] \}, \\ J_{t,x}(\varphi) &:= \underset{\psi \in \mathcal{A}'(t,\varphi)}{\text{ess sup}} \mathbb{E}[U(V'_T(x,\psi)) \,|\, \mathscr{F}_t], \\ \end{aligned} \qquad t \in [0,T], x \in \mathbb{R}, \varphi \in \mathcal{A}'. \end{aligned}$$

(a) Make the ansatz that there exists a real-valued function v in $C^{1,2}([0,T] \times \mathbb{R}) \cap C^0([0,T] \times \mathbb{R})$ such that $J_{t,x}(\varphi) = v(t, V'_t(x, \varphi))$. Argue that v should satisfy the HJB equation

$$v_t(t,x) + \sup_{\rho \in \mathbb{R}} \left(\rho(\mu - r) v_x(t,x) + \frac{1}{2} \rho^2 \sigma^2 v_{xx}(t,x) \right) = 0, \quad t \in [0,T), x \in \mathbb{R},$$

$$v(T,x) = U(x), \quad x \in \mathbb{R}.$$
(*)

Hint: Apply Itô's formula and the martingale optimality principle.

(b) Assume that $v(t, \cdot)$ is strictly concave for all $t \in [0, T)$. Use this to find a real-valued function ρ^* in $C^0([0, T) \times \mathbb{R})$ such that for each $t \in [0, T), x \in \mathbb{R}$,

$$\sup_{\rho \in \mathbb{R}} \left(\rho(\mu - r) v_x(t, x) + \frac{1}{2} \rho^2 \sigma^2 v_{xx}(t, x) \right) = \rho^*(t, x) (\mu - r) v_x(t, x) + \frac{1}{2} (\rho^*(t, x))^2 \sigma^2 v_{xx}(t, x)$$

and deduce that under the strict concavity assumption, (*) is equivalent to

$$0 = v_t - \frac{(\mu - r)^2}{2\sigma^2} \frac{(v_x)^2}{v_{xx}} \quad \text{in } [0, T) \times \mathbb{R} \quad \text{and} \quad v(T, \cdot) = U(\cdot) \quad \text{on } \mathbb{R}.$$
(**)

- (c) Show that the ansatz of part (a) implies that $v(t, x) = \exp(-ax)w(t)$ for some real-valued function w in $C^1([0,T]) \cap C^0([0,T])$. Use this to solve the PDE (**) explicitly, and deduce that $\rho^*(t,x) = \frac{\mu r}{\rho \sigma^2}, t \in [0,T), x \in \mathbb{R}$.
- (d) For $x \in \mathbb{R}$, set $\varphi_x^* := \varphi^* := \frac{\mu r}{\alpha \sigma^2}$. Using without proof that indeed $J_{t,x}(\varphi) = v(t, V'_t(x, \varphi))$ for all $t \in [0, T]$, $x \in \mathbb{R}$ and $\varphi \in \mathcal{A}'$, show that φ^* is an optimiser of the reformulated problem, and thus $\vartheta_x^* := \vartheta^* = \frac{\varphi^*}{S^1}$ is an optimiser of the original problem. *Hint:* Apply the the martingale optimality principle.

Exercise 6-2

Let $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \in [0,T]}, \mathbb{P})$ be a filtered probability space and $W = (W_t)_{t \in [0,t]}$ a Brownian motion for $(\mathscr{F}_t)_{t \in [0,T]}$. Let $(1, S) = (1, S_t)_{t \in [0,T]}$ be a *Bachelier market*, i.e., $S_t = S_0 + \mu t + \sigma W_t$, $t \in [0,T]$, where $\sigma > 0$, $\mu \in \mathbb{R}$ and $S_0 = s > 0$. Then $S = S_0 + M + \lambda \bullet \langle M \rangle$, where $M = \sigma W$ and $\lambda = \frac{\mu}{\sigma^2}$. Set $\Theta = L^2(M)$. We consider the particular problem of finding the optimal strategy $\vartheta^* \in \Theta$ such that

$$\mathbb{E}[(1 - V_T(0, \vartheta^*))^2] = \inf_{\vartheta \in \Theta} \mathbb{E}[(1 - V_T(0, \vartheta))^2].$$

For $t \in [0,T]$ and $y \in L^2(\mathscr{F}_t,\mathbb{P})$, define $J^1_t(y)$ as in the lecture and recall that

$$J_t^1(y) = a_t y^2 - 2b_t y + c_t, \quad t \in [0, T],$$

where $a = (a_t)_{t \in [0,T]}$, $b = (b_t)_{t \in [0,T]}$ and $c = (c_t)_{t \in [0,T]}$ are semimartingales and satisfy the BSDEs

$$da_t = a_{t-} \left(\lambda + \frac{\nu_t^a}{a_{t-}}\right)^2 d\langle M \rangle_t + \nu_t^a dM_t + dL_t^a, \qquad a_T = 1; \qquad (A)$$

$$\mathrm{d}b_t = \left(\lambda + \frac{\nu_t^a}{a_{t-}}\right) \left(\lambda b_{t-} + \nu_t^b\right) \mathrm{d}\langle M \rangle_t + \nu_t^b \,\mathrm{d}M_t + \,\mathrm{d}L_t^b, \qquad b_T = 1; \qquad (B)$$

$$dc_t = \frac{(\lambda b_{t-} + \nu_t^b)^2}{a_{t-}} d\langle M \rangle_t + dN_t^c, \qquad c_T = 1, \qquad (C)$$

where $\nu^a, \nu^b \in L^2_{loc}(M)$, L^a, L^b are local \mathbb{P} -martingales strongly orthogonal to M, and N^c is a local \mathbb{P} -martingale.

- (a) Find a strong solution (a, ν^a, L^a, b, ν^b, L^b, c, N^c) for the BSDEs (A) (C). *Hint:* Using that ⟨M⟩ is *deterministic*, try to find a solution such that a, b and c are deterministic. Moreover, first solve (A) and (B) and then (C).
- (b) Find a strong solution X^* to the SDE

$$\mathrm{d}X_t^* = \left(\frac{\lambda b_{t-} + \nu_t^b}{a_{t-}} - X_t^* \left(\lambda + \frac{\nu_t^a}{a_{t-}}\right)\right) \,\mathrm{d}S_t, \quad X_0^* = 0,$$

and deduce that $X^* = \vartheta^* \bullet S$, where $\vartheta_t^* = \lambda \mathcal{E}(-\lambda \bullet S), t \in [0, T]$.

(c) Show that $\vartheta^* \in \Theta = L^2(M)$ and that it is indeed optimal.

Hint: For the first claim, argue that it suffices to show that $\lambda \mathcal{E}(-\lambda M) \in L^2(M)$. For the second claim, use the martingale optimality principle and calculate $J_t^1(V_t(0, \vartheta^*)), t \in [0, T]$, explicitly.

Exercise 6-3

Consider the same setup as in Exercise 6-2. We now consider an investor who wants to invest into the market (1, S) by choosing a strategy $\vartheta \in \Theta = L^2(M)$. For $\vartheta \in \Theta$, denote by $\alpha_\vartheta := \mathbb{E}[\vartheta \bullet S_T]$ the *return* and by $\beta_\vartheta := \sqrt{\operatorname{Var}[\vartheta \bullet S_T]}$ the *volatility* of ϑ .

(a) Let $\vartheta^* = \lambda \mathcal{E}(-\lambda \bullet S)$ be as in Exercise 6-2. Set $\alpha^* := \alpha_{\vartheta^*}$ and $\beta^* := \beta_{\vartheta^*}$. Show that

 $\beta_{\vartheta} \ge \beta^*$ for all $\vartheta \in \Theta$ satisfying $\alpha_{\vartheta} = \alpha^*$.

(b) Show that

$$\alpha_{\vartheta} \leq \beta_{\vartheta} \sqrt{\exp\left(\frac{\mu^2}{\sigma^2}T\right) - 1} \quad \text{for all } \vartheta \in \Theta.$$

Moreover, show that if $\mu \neq 0$, then for each $\alpha > 0$, there exists ϑ_{α} such that

$$\alpha_{\vartheta_{\alpha}} = \alpha \quad \text{and} \quad \frac{\alpha_{\vartheta_{\alpha}}}{\beta_{\vartheta_{\alpha}}} = \sqrt{\exp\left(\frac{\mu^2}{\sigma^2}T\right) - 1}.$$

Hint: Show that $\frac{\alpha^*}{\beta^*} := \sqrt{\exp\left(\frac{\mu^2}{\sigma^2}T\right) - 1}.$

Exercise 6-4

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space, $\mathcal{Y} := L^{\infty}(\mathscr{F}, \mathbb{P})$ and $\rho : \mathcal{Y} \to \mathbb{R}$ a map. We consider different properties/axioms for ρ :

- Monotonicity (M): $\rho(Y^1) \le \rho(Y^2)$ for all $Y^1, Y^2 \in \mathcal{Y}$ with $Y^1 \ge Y^2$ P-a.s.
- Translation invariance (T): $\rho(Y+c) = \rho(Y) c$ for all $Y \in \mathcal{Y}$ and $c \in \mathbb{R}$.
- Subadditivity (S): $\rho(Y^1 + Y^2) \le \rho(Y^1) + \rho(Y^2)$ for all $Y^1, Y^2 \in \mathcal{Y}$.
- Positive homogeneity (PH) $\rho(\lambda Y) = \lambda \rho(Y)$ for all $Y \in \mathcal{Y}$ and $\lambda \ge 0$.
- Convexity (C): $\rho(\lambda Y^1 + (1 \lambda)Y^2) \leq \lambda \rho(Y^1) + (1 \lambda)\rho(Y^2)$ for all $Y^1, Y^2 \in \mathcal{Y}$ and $\lambda \in [0, 1]$.
- Quasi-convexity (QC): $\rho(\lambda Y^1 + (1 \lambda)Y^2) \le \max(\rho(Y^1), \rho(Y^2))$ for all $Y^1, Y^2 \in \mathcal{Y}$ and $\lambda \in [0, 1]$.
- (a) Show that if ρ satisfies (M) and (T), then ρ is Lipschitz continuous with respect to $\|\cdot\|_{L^{\infty}}$.
- (b) Show that if ρ satisfies (T), then it satisfies (C) if and only if it satisfies (QC). *Hint:* For " \Leftarrow ", show that $\mathcal{A}_{\rho} := \{Y \in \mathcal{Y} : \rho(Y) \leq 0\}$ is a convex set.
- (c) Show that if ρ satisfies (M), (T), (S) and (C) and $\rho(0) = 0$, then it also satisfies (PH). *Hint:* First, using (S) and (C) show by induction that $\rho(\lambda Y) = \lambda \rho(Y)$ for all $Y \in \mathcal{Y}$ and all *rational* $\lambda > 0$. Then, use part (a).

Exercise 6-5

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space, $\mathcal{Y} := L^1(\mathscr{F}, \mathbb{P})$ and $\alpha \in (0, 1)$ a fixed sensitivity parameter. We consider the following maps $\mathcal{Y} \to \mathbb{R}$:

- Value at Risk (VaR_{α}): VaR_{α}(Y) := sup{ $y : \mathbb{P}[Y \le -y] > \alpha$ }.
- Average Value at Risk (AVaR_{α}): AVaR_{α}(Y) := $\frac{1}{\alpha} \int_0^{\alpha} \text{VaR}_u(Y) \, du$.
- Tail Conditional Expectation (TCE_{α}): TCE_{α}(Y) := $\mathbb{E}_{\mathbb{P}}[-Y \mid -Y \geq \operatorname{VaR}_{\alpha}(Y)]$.
- Worst Conditional Expectation (WCE_{α}): WCE_{α}(Y) := sup{ $\mathbb{E}_{\mathbb{P}}[-Y | A] : A \in \mathscr{F}$ with $P[A] > \alpha$ }.

One can show that $AVaR_{\alpha}$ admits a dual characterisation

$$\operatorname{AVaR}_{\alpha}(Y) = \sup_{\mathbb{Q}\in\mathcal{Q}_{\alpha}} \mathbb{E}_{\mathbb{Q}}[-Y], \quad Y\in\mathcal{Y},$$

where

$$\mathcal{Q}_{lpha} := \left\{ \mathbb{Q} \in \mathcal{M}_1^a : rac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}} \leq rac{1}{lpha} \; \; \mathbb{P} ext{-a.s.}
ight\}.$$

Moreover, by arguing as in the lecture, one can show that both $AVaR_{\alpha}$ and WCE_{α} are coherent risk measures on \mathcal{Y} .

(a) Show that for all $Y \in \mathcal{Y}$,

$$\operatorname{AVaR}_{\alpha}(Y) \ge \operatorname{WCE}_{\alpha}(Y) \ge \operatorname{TCE}_{\alpha}(Y) \ge \operatorname{VaR}_{\alpha}(Y),$$

and that the first two inequalities are equalities in case that Y has a continuous distribution.

Hint: For the first inequality, use the dual characterisation of $\operatorname{AVaR}_{\alpha}$. For the second inequality, argue that $\mathbb{P}[-Y \geq \operatorname{VaR}_{\alpha}(Y) - \epsilon] > \alpha$ for all $\epsilon > 0$. For the last statement, use without proof that if Y has a continuous distribution F_Y , then there exists a random variable U which is uniformly distributed on (0, 1) such that $Y = q_Y^+(U)$ P-a.s., where $q_Y^+(u) := \inf\{y \in \mathbb{R} : F_Y(y) > u\}, u \in (0, 1)$, is the upper quantile function of Y.

- (b) Calculate $\operatorname{VaR}_{\alpha}(-Y)$ and $\operatorname{AVaR}_{\alpha}(-Y)$, where Y is
 - (i) exponentially distributed with rate parameter $\lambda > 0$,
 - (ii) Pareto distributed with parameter $\beta > 1$, i.e.,

$$\mathbb{P}[Y \ge y] = \begin{cases} y^{-\beta}, & y \ge 1, \\ 1, & y < 1, \end{cases}$$

(iii) lognormally distributed with parameters $\mu \in \mathbb{R}$ and $\sigma > 0$.