Mathematical Finance
 Solution Sheet 2

Solution 2-1

(a) Define

$$
\begin{equation*}
k^{*}:=\min \left\{k \in\{1, \ldots, N\}: G_{\tau_{k}}(\vartheta) \in L_{+}^{0} \backslash\{0\}\right\} \tag{1}
\end{equation*}
$$

and set $\sigma_{0}:=\tau_{k^{*}-1}$ and $\sigma_{1}:=\tau_{k^{*}}$. Moreover, set

$$
h:= \begin{cases}h^{k^{*}} & \text { if } \mathbb{P}\left[G_{\tau_{k^{*}-1}}(\vartheta)=0\right]=1 \tag{2}\\ \left.h^{k^{*}} \mathbb{1}_{\left\{G_{\tau_{k^{*}-1}}\right.}(\vartheta)<0\right\} & \text { if } \mathbb{P}\left[G_{\tau_{k^{*}-1}}(\vartheta)=0\right]<1\end{cases}
$$

Note that $\mathbb{P}\left[G_{\tau_{k^{*}-1}}(\vartheta)<0\right]>0$ in the second case by the definition of k^{*}. We claim that $\vartheta^{*}:=h \mathbb{1}_{\rrbracket \sigma_{0}, \sigma_{1} \rrbracket} \in \mathbf{b} \mathcal{E}$ is an arbitrage opportunity. Indeed, in the first case,

$$
\begin{equation*}
G_{T}\left(\vartheta^{*}\right)=G_{\tau_{k^{*}}}(\vartheta)-G_{\tau_{k^{*}-1}}(\vartheta)=G_{\tau_{k^{*}}}(\vartheta) \in L_{+}^{0} \backslash\{0\} \tag{3}
\end{equation*}
$$

and in the second case,

$$
\begin{align*}
G_{T}\left(\vartheta^{*}\right) & \left.=\left(G_{\tau_{k^{*}}}(\vartheta)-G_{\tau_{k^{*}-1}}(\vartheta)\right) \mathbb{1}_{\left\{G_{\tau_{k^{*}-1}}\right.}(\vartheta)<0\right\} \\
& \left.\geq-G_{\tau_{k^{*}-1}}(\vartheta) \mathbb{1}_{\left\{G_{\tau_{k^{*}-1}}\right.}(\vartheta)<0\right\} \in L_{+}^{0} \backslash\{0\} . \tag{4}
\end{align*}
$$

(b) Let $a>0$ be such that $G(\vartheta) \geq-a \mathbb{P}$-a.s. By right-continuity of the paths of $G(\vartheta)$, it suffices to show $G_{t}(\vartheta) \geq-c \mathbb{P}-$ a.s. for all $t \in[0, T)$. Seeking a contradiction, assume there is $t \in[0, T)$ such that $\mathbb{P}\left[G_{t}(\vartheta)<-c\right]>0$. But then $\vartheta^{*}:=\vartheta \mathbb{1}_{\left\{G_{t}(\vartheta)<-c\right\} \times(t, T]}$ is predictable, in $L(S)$ and satisfies

$$
\begin{align*}
G\left(\vartheta^{*}\right) & =\left(G(\vartheta)-G_{t}(\vartheta)\right) \mathbb{1}_{\left\{G_{t}(\vartheta)<-c\right\} \times(t, T]} \geq-a+c, \\
G_{T}\left(\vartheta^{*}\right)_{T} & =\left(G_{T}(\vartheta)-G_{t}(\vartheta)\right) \mathbb{1}_{\left\{G_{t}(\vartheta)<-c\right\}} \geq\left(-c-G_{t}(\vartheta)\right) \mathbb{1}_{\left\{G_{t}(\vartheta)<-c\right\}} \tag{5}
\end{align*}
$$

But this shows both that ϑ^{*} is admissible and that S fails NA, in contradiction to the hypothesis.
(a) First, assume that S is bounded. Note that then every simple strategy is admissible. Moreover, S is a uniformly integrable Q-martingale if and only if $\mathbb{E}_{\mathbb{Q}}\left[S_{\tau}-S_{0}\right]=0$ for all stopping times (taking values in $[0, T]$). So let τ be an arbitrary stopping time, and consider the simple strategies $\vartheta:=\mathbb{1}_{\rrbracket 0, \tau \rrbracket}$ and $-\vartheta$. Using that \mathbb{Q} is an equivalent separating measure for S then gives

$$
\begin{equation*}
0 \geq \mathbb{E}_{\mathbb{Q}}\left[\vartheta \bullet S_{T}\right]=\mathbb{E}_{\mathbb{Q}}\left[S_{\tau}-S_{0}\right]=-\mathbb{E}_{\mathbb{Q}}\left[-\left(S_{\tau}-S_{0}\right)\right]=-\mathbb{E}_{\mathbb{Q}}\left[(-\vartheta) \bullet S_{T}\right] \geq 0 \tag{6}
\end{equation*}
$$

Next, consider the case that S is locally bounded. Then there exists an increasing sequence of stopping times $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ taking values in $[0, T]$ with $\lim _{n \rightarrow \infty} \mathbb{P}\left[\sigma_{n}=T\right]=1$ such that $S^{\sigma_{n}}$ is bounded for all $n \in \mathbb{N}$. It suffices to show that for each $n \in \mathbb{N}, S^{\sigma_{n}}$ is a uniformly integrable \mathbb{Q}-martingale. To this end, fix $n \in \mathbb{N}$. It suffices to show that for each stopping time τ with $\tau \leq \sigma_{n} \mathbb{P}$-a.s., $\mathbb{E}_{\mathbb{Q}}\left[S_{\tau}-S_{0}\right]=0$. So let τ be such a stopping time, and consider as above the simple strategies $\vartheta:=\mathbb{1}_{\rrbracket 0, \tau \rrbracket}$ and $-\vartheta$. Then both strategies are admissible since S is bounded on $\llbracket 0, \sigma_{n} \rrbracket$ and $\tau \leq \sigma_{n} \mathbb{P}$-a.s., and the same argument as in the first step gives $\mathbb{E}_{\mathbb{Q}}\left[S_{\tau}-S_{0}\right]=0$.
(b) By assumption, there exist a strictly positive predictable process $\psi=\left(\psi_{t}\right)_{t \in[0, T]}$, an $\mathbb{R}^{d_{-}}$ valued (local) \mathbb{Q}-martingale M, and an \mathbb{R}^{d}-valued \mathscr{F}_{0}-measurable random vector S_{0} such that $S=S_{0}+\psi \bullet M$. Let $\vartheta \in \Theta_{\text {adm }}$. Then by the associativity of the stochastic integral, $G(\vartheta)=\vartheta \bullet S=(\vartheta \psi) \bullet M$. Moreover, as $(\vartheta \psi) \bullet M$ is uniformly bounded from below by admissibility, it is a local \mathbb{Q}-martingale by the Ansel-Stricker theorem. By Fatou's lemma, it is then also a \mathbb{Q}-supermartingale, and hence

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}}\left[G_{T}(\vartheta)\right] \leq \mathbb{E}_{\mathbb{Q}}\left[G_{0}(\vartheta)\right]=0 \tag{7}
\end{equation*}
$$

(c) First, since \mathscr{F}_{t} is \mathbb{P}-trivial for all $t \in[0, T)$, a process $\xi=\left(\xi_{t}\right)_{t \in[0, T]}$ is adapted if and only if it is deterministic on $[0, T)$ and ξ_{T} is $\sigma(X)$-measurable. In particular, all left-continuous and adapted processes for the filtration $\left(\mathscr{F}_{t}\right)_{t \in[0, T]}$ are deterministic, and by a monotone class argument, the same is true for all predictable processes.

Next, if $\vartheta \in L(S)$ is arbitrary, then

$$
\begin{equation*}
G_{T}(\vartheta)=\vartheta \bullet S_{T}=\vartheta \bullet S_{T-}+\vartheta_{T} \Delta S_{T}=\lim _{t \uparrow T} \vartheta \bullet S_{t}+\vartheta_{T} X=0+\vartheta_{T} X=\vartheta_{T} X \tag{8}
\end{equation*}
$$

Since ϑ_{T} is deterministic and X normally distributed, it follows that $\vartheta \in \Theta_{\text {adm }}$ if and only if $\vartheta_{T}=0$. Thus, we may conclude that $G_{T}(\vartheta)=0$ for all $\vartheta \in \Theta_{\mathrm{adm}}$. Therefore the condition

$$
\mathbb{E}_{\mathrm{Q}}\left[G_{T}(\vartheta)\right] \leq 0 \quad \text { for all } \vartheta \in \Theta_{\mathrm{adm}}
$$

is trivially satisfied for each probability measure $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_{T}. In particular, \mathbb{P} itself is a separating measure.
Finally if $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_{T} is an equivalent probability measure, by the first step (whose results remain unchanged by an equivalent change of measure), $M=\left(M_{t}\right)_{t \in[0, T]}$ is a \mathbb{Q}-martingale null at 0 for the filtration $\left(\mathscr{F}_{t}\right)_{t \in[0, T]}$ if and only if M_{T} is $\sigma(X)$-measurable, Q-integrable with mean 0 and $M_{t}=0$ for all $t \in[0, T)$. Moreover, if $\psi \in L^{\mathbb{Q}}(M)$, then as M is constant and equal to 0 on $[0, T)$,

$$
\psi \bullet M_{t}= \begin{cases}0 & \text { for } t<T, \tag{9}\\ \psi_{T} M_{T} & \text { for } t=T\end{cases}
$$

Note that as ψ_{T} is constant, $\psi \bullet M$ is a true \mathbb{Q}-martingale, and therefore \mathbb{Q} is a equivalent σ-martingale measure for S if and only if it is an equivalent martingale measure. Since $\mathbb{E}\left[S_{T}\right]=\mu \neq 0, \mathbb{P}$ is not a martingale measure and hence also not a σ-martingale measure.
(a) Define the measure $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_{1} by

$$
\begin{equation*}
\frac{\mathrm{dQ}}{\mathrm{dP}}:=\frac{1}{1+\left\|S_{1}\right\|} / \mathbb{E}\left[\frac{1}{1+\left\|S_{1}\right\|}\right] \tag{10}
\end{equation*}
$$

where $\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^{d}. Then $\frac{\mathrm{dQ}}{\mathrm{dP}}$ is bounded by $\mathbb{E}\left[\frac{1}{1+\left\|S_{1}\right\|}\right]^{-1}$ and

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}}\left[\left|S_{1}^{i}\right|\right]=\mathbb{E}\left[\frac{\left|S_{1}^{i}\right|}{1+\left\|S_{1}\right\|}\right] / \mathbb{E}\left[\frac{1}{1+\left\|S_{1}\right\|}\right]<\infty, \quad i=1, \ldots, d \tag{11}
\end{equation*}
$$

This shows that $\mathcal{Q} \neq \emptyset$. To show that \mathcal{Q} is also convex, take $\mathbb{Q}^{1}, \mathbb{Q}^{2} \in \mathcal{Q}$ and let $\alpha \in(0,1)$. Then $\mathbb{Q}^{\alpha}:=\alpha \mathbb{Q}^{1}+(1-\alpha) \mathbb{Q}^{2}$ is again a probability measure and equivalent to \mathbb{P} on \mathscr{F}_{1}. Moreover, $\frac{d Q^{\alpha}}{d P}$ is bounded since $\frac{\mathrm{dQ}^{1}}{\mathrm{dP}}$ and $\frac{\mathrm{dQ}^{2}}{\mathrm{dP}}$ are so, and

$$
\begin{equation*}
\frac{\mathrm{d} \mathbb{Q}^{\alpha}}{\mathrm{dP}}=\frac{\mathrm{d}\left(\alpha \mathbb{Q}^{1}+(1-\alpha) \mathbb{Q}^{2}\right)}{\mathrm{dP}}=\alpha \frac{\mathrm{d} \mathbb{Q}^{1}}{\mathrm{~d} \mathbb{P}}+(1-\alpha) \frac{\mathrm{d} \mathbb{Q}^{2}}{\mathrm{~d} \mathbb{P}} \leq \frac{\mathrm{d} \mathbb{Q}^{1}}{\mathrm{dP}}+\frac{\mathrm{d} \mathbb{Q}^{2}}{\mathrm{dP}} \tag{12}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}^{\alpha}}\left[\left|S_{1}^{i}\right|\right]=\mathbb{E}_{\alpha \mathbb{Q}^{1}+(1-\alpha) \mathbb{Q}^{2}}\left[\left|S_{1}^{i}\right|\right]=\alpha \mathbb{E}_{\mathbb{Q}^{1}}\left[\left|S_{1}^{i}\right|\right]+(1-\alpha) \mathbb{E}_{\mathbb{Q}^{2}}\left[\left|S_{1}^{i}\right|\right]<\infty, \quad i=1, \ldots, d \tag{13}
\end{equation*}
$$

which shows that $\mathbb{Q}^{\alpha} \in \mathcal{Q}$.
(b) Fix $\mathbb{Q} \in \mathcal{Q}$, and for $\epsilon \in(0,1)$, define the function

$$
\begin{equation*}
\varphi_{\epsilon}=\epsilon \mathbb{1}_{\left\{\vartheta^{t r} \Delta S_{1} \geq 0\right\}}+(1-\epsilon) \mathbb{1}_{\left\{\vartheta^{t r} \Delta S_{1}<0\right\}} \tag{14}
\end{equation*}
$$

and the measure $\mathbb{Q}_{\epsilon} \approx \mathbb{Q}$ on \mathscr{F}_{1} by

$$
\begin{equation*}
\frac{\mathrm{d} \mathbb{Q}_{\epsilon}}{\mathrm{dQ}}=\frac{\varphi_{\epsilon}}{\mathbb{E}_{\mathbb{Q}}\left[\varphi_{\epsilon}\right]} \tag{15}
\end{equation*}
$$

Then $0<\varphi_{\epsilon} \leq 1$ for all $\epsilon \in(0,1)$ and hence $\mathbb{Q}_{\epsilon} \in \mathcal{Q}$ since $\mathbb{Q} \in \mathcal{Q}$ and $\frac{\mathrm{dQ}_{\epsilon}}{\mathrm{dQ}}$ is bounded. (Note that since \mathscr{F}_{0} is trivial, S_{0}^{i} is a constant and hence integrability (under some measure) of S^{i} and ΔS^{i} is equivalent, $i=1, \ldots, d$.) Now suppose that there exists $\vartheta \in \mathbb{R}^{d}$ such that $\vartheta^{t r} x \geq 0$ for all $x \in \mathcal{C}$. Then in particular,

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}_{\epsilon}}\left[\vartheta^{\operatorname{tr}} \Delta S_{1}\right]=\frac{\mathbb{E}_{\mathbf{Q}}\left[\varphi_{\epsilon} \vartheta^{t r} \Delta S_{1}\right]}{\mathbb{E}_{\mathbf{Q}}\left[\varphi_{\epsilon}\right]} \geq 0 \tag{16}
\end{equation*}
$$

Thus, by dominated convergence

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}}\left[\vartheta^{t r} \Delta S_{1} \mathbb{1}_{\left\{\vartheta^{t r} \Delta S_{1}<0\right\}}\right]=\lim _{\epsilon \rightarrow 0} \mathbb{E}_{\mathbb{Q}}\left[\varphi_{\epsilon} \vartheta^{t r} \Delta S_{1}\right] \geq 0 \tag{17}
\end{equation*}
$$

But this implies that $\vartheta^{\text {tr }} \Delta S_{1} \geq 0 \mathbb{Q}$-a.s. and, since $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_{1}, also \mathbb{P}-a.s.
(c) Since \mathscr{F}_{0} is trivial, we can identify any d-dimensional predictable process $\vartheta=\left(0, \vartheta_{1}\right)$ with the vector $\vartheta_{1} \in \mathbb{R}^{d}$. For convenience and in a slight abuse of notation, write ϑ instead of ϑ_{1}. With this notation, it is straightforward to check that S satisfies NA if and only if whenever $\vartheta \in \mathbb{R}^{d}$ satisfies $\vartheta^{t r} \Delta S_{1} \geq 0 \mathbb{P}$-a.s. then $\vartheta^{t r} \Delta S_{1}=0 \mathbb{P}$-a.s.
First, suppose that S satisfies NA. It suffices to show that the set \mathcal{C} contains the origin. Seeking a contradiction, suppose that this is not the case. Then by the hint, there exist $\vartheta \in \mathbb{R}^{d}$ and $\mathbb{Q}_{0} \in \mathcal{Q}$ such that $\vartheta^{t r} x \geq 0$ for all $x \in \mathcal{C}$ and $\mathbb{E}_{\mathbb{Q}_{0}}\left[\vartheta^{t r} \Delta S_{1}\right]>0$. But then by part (b), it follows that $\vartheta^{t r} \Delta S_{1} \geq 0 \mathbb{P}$-a.s. and, since $\mathbb{Q}_{0} \approx \mathbb{P}$ on \mathscr{F}_{1}, also \mathbb{Q}_{0}-a.s. But this implies that $\mathbb{Q}_{0}\left[\vartheta^{t r} \Delta S_{1}>0\right]>0$, and, since $\mathbb{Q}_{0} \approx \mathbb{P}$ on \mathscr{F}_{1}, also $\mathbb{P}\left[\vartheta^{t r} \Delta S_{1}>0\right]>0$, and we arrive at a contradiction.
Conversely, suppose that there exists $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_{1} with $\frac{\mathrm{dQ}}{\mathrm{dP}}$ bounded and such that S is a \mathbb{Q}-martingale. This implies in particular that $\mathbb{E}_{\mathbb{Q}}\left[\vartheta^{t r} \Delta S_{1}\right]=0$ for all $\vartheta \in \mathbb{R}^{d}$ and hence, whenever $\vartheta \in \mathbb{R}^{d}$ satisfies $\vartheta^{t r} \Delta S_{1} \geq 0 \mathbb{P}$-a.s. then $\vartheta^{t r} \Delta S_{1}=0 \mathbb{P}$-a.s. since $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F}_{1}.
(a) Since $A^{1}-A^{2}$ is adapted, continuous, of finite variation and null at 0 , it suffices to show that $A^{1}-A^{2}$ is a local martingale. To this end, define for each $n \in \mathbb{N}$ the stopping time

$$
\begin{equation*}
\tau_{n}:=\inf \left\{t \in[0, T]: \max \left(A_{t}^{1}, A_{t}^{2}\right) \geq n\right\} \wedge T \tag{18}
\end{equation*}
$$

Then for each $n \in \mathbb{N}$, the stopped processes $\left(A^{1}\right)^{\tau_{n}}$ and $\left(A^{2}\right)^{\tau_{n}}$ are both uniformly bounded by n, and $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of stopping times with $\lim _{n \rightarrow \infty} \mathbb{P}\left[\tau_{n}=T\right]=1$. We proceed to show that for each $n \in \mathbb{N}$, the stopped process $\left(A^{1}-A^{2}\right)^{\tau_{n}}$ is a uniformly integrable martingale. So fix $n \in \mathbb{N}$. It suffices to show that for each stopping time σ, $\mathbb{E}\left[\left(A^{1}\right)_{\sigma}^{\tau_{n}}\right]=\mathbb{E}\left[\left(A^{2}\right)_{\sigma}^{\tau_{n}}\right]$. So let σ be an arbitrary stopping time. Then

$$
\begin{align*}
\mathbb{E}\left[\left(A^{1}\right)_{\sigma}^{\tau_{n}}\right] & =\mathbb{E}\left[\int_{0}^{T} \mathbb{1}_{\rrbracket 0, \sigma \wedge \tau_{n} \rrbracket} \mathrm{~d} A_{s}^{1}\right]=\left(\mathbb{P} \otimes A^{1}\right)\left[\rrbracket 0, \sigma \wedge \tau_{n} \rrbracket\right] \\
& =\left(\mathbb{P} \otimes A^{2}\right)\left[\rrbracket 0, \sigma \wedge \tau_{n} \rrbracket\right]=\mathbb{E}\left[\int_{0}^{t} \mathbb{1}_{\rrbracket 0, \sigma \wedge \tau_{n} \rrbracket} \mathrm{~d} A_{s}^{2}\right] \\
& =\mathbb{E}\left[\left(A^{2}\right)_{\sigma}^{\tau_{n}}\right] . \tag{19}
\end{align*}
$$

(b) Consider the σ-finite measures $\mathbb{P} \otimes B$ and $\mathbb{P} \otimes C$ on $(\bar{\Omega}, \mathcal{P})$. Then by the Lebesgue decomposition theorem, there exist unique σ-finite measures $\nu_{a} \ll \mathbb{P} \otimes C$ and $\nu_{s} \perp \mathbb{P} \otimes C$ on $(\bar{\Omega}, \mathcal{P})$ such that $\nu_{a}+\nu_{s}=\mathbb{P} \otimes B$. In particular, there exists a predictable set $\bar{N} \in \mathcal{P}$ such that $\nu_{s}=\mathbb{1}_{\bar{N}}(\mathbb{P} \otimes B), \nu_{a}=\mathbb{1}_{\bar{\Omega} \backslash \bar{N}}(\mathbb{P} \otimes B)$ and $(\mathbb{P} \otimes C)[\bar{N}]=0$. Define the processes $B^{1}=\left(B_{t}^{1}\right)_{t \in[0, T]}, B^{2}=\left(B_{t}^{2}\right)_{t \in[0, T]}$ and $C^{1}=\left(C_{t}^{1}\right)_{t \in[0, T]}$ by

$$
\begin{equation*}
B_{t}^{1}=\int_{0}^{t} \mathbb{1}_{\bar{N}} \mathrm{~d} B_{s}, \quad B_{t}^{2}=\int_{0}^{t} \mathbb{1}_{\bar{\Omega} \backslash \bar{N}} \mathrm{~d} B_{s} \quad \text { and } \quad C_{t}^{1}:=\int_{0}^{t} \mathbb{1}_{\bar{N}} \mathrm{~d} C_{s} . \tag{20}
\end{equation*}
$$

Then B^{1}, B^{2} and C^{1} are increasing, adapted, continuous and null at $0, B^{1}+B^{2}=B$, $\nu_{s}=\mathbb{P} \otimes B^{1}$ and $\nu_{a}=\mathbb{P} \otimes B^{2}$, and for all $\bar{A} \in \mathcal{P}$,

$$
\begin{equation*}
\left(\mathbb{P} \otimes C^{1}\right)[\bar{A}]=\mathbb{E}\left[\int_{\bar{A}} \mathbb{1}_{\bar{N}} \mathrm{~d} C_{s}\right]=(\mathbb{P} \otimes C)[\bar{A} \cap \bar{N}]=0=(\mathbb{P} \otimes 0)[\bar{A}] \tag{21}
\end{equation*}
$$

where 0 denotes the zero process. Thus by part (a), we may deduce that $C^{1} \equiv 0$. Next, by the Radon-Nikodým theorem, there exists a predictable process $H \geq 0$ such that

$$
\begin{equation*}
\nu_{a}=\mathbb{P} \otimes B^{2}=H(\mathbb{P} \otimes C) \tag{22}
\end{equation*}
$$

We proceed to show that $H \in L(C)$ and hence $H(\mathbb{P} \otimes C)=\mathbb{P} \otimes(H \bullet C)$. To this end, define for each $n \in \mathbb{N}$ the stopping time

$$
\begin{equation*}
\tau_{n}:=\inf \left\{t \in[0, T]: \max \left(B_{t}^{2}, C_{t}\right) \geq n\right\} \wedge T \tag{23}
\end{equation*}
$$

Then for each $n \in \mathbb{N}$, the stopped processes $\left(B^{2}\right)^{\tau_{n}}$ and $C^{\tau_{n}}$ are both uniformly bounded by n, and $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of stopping times with $\lim _{n \rightarrow \infty} \mathbb{P}\left[\tau_{n}=T\right]=1$. Hence, it suffices to show that $H \in L\left(C^{\tau_{n}}\right)$ for all $n \in \mathbb{N}$. So fix $n \in \mathbb{N}$. Then by the definition of H,

$$
\begin{align*}
\mathbb{E}\left[\int_{0}^{T} H_{s} \mathrm{~d} C_{s}^{\tau_{n}}\right] & =\mathbb{E}\left[\int_{0}^{T} H_{s} \mathbb{1}_{\rrbracket 0, \tau_{n} \rrbracket} \mathrm{~d} C_{s}\right]=\int_{\bar{\Omega}} \mathbb{1}_{\rrbracket 0, \tau_{n} \rrbracket} H \mathrm{~d}(\mathbb{P} \otimes C) \\
& =\int_{\bar{\Omega}} \mathbb{1}_{\rrbracket 0, \tau_{n} \rrbracket} \mathrm{~d}\left(\mathbb{P} \otimes B^{2}\right)=\mathbb{E}\left[\int_{0}^{T} \mathbb{1}_{\rrbracket 0, \tau_{n} \rrbracket} \mathrm{~d} B_{s}^{2}\right]=\mathbb{E}\left[B_{\tau_{n}}^{2}\right] \leq n . \tag{24}
\end{align*}
$$

Finally, since $\mathbb{P} \otimes(H \bullet C)=\mathbb{P} \otimes B^{2}$, it follows from part (a), that $B^{2}=H \bullet C$, which together with the above establishes the claim.
(c) Suppose that S satisfies NA.

First, write $\operatorname{Var}(A)=\left(\operatorname{Var}(A)_{t}\right)_{t \in[0, T]}, A^{+}=\left(A_{t}^{+}\right)_{t \in[0, T]}$ and $A^{-}=\left(A_{t}^{-}\right)_{t \in[0, T]}$ for the total, the positive and the negative variation of A, respectively. Then $\operatorname{Var}(A), A^{+}$and A^{-}are all increasing, adapted, continuous and null at 0 , and $A=A^{+}-A^{-}$and $\operatorname{Var}(A)=A^{+}+A^{-}$. On the level of measures, this means that

$$
\begin{equation*}
\mathbb{P} \otimes A^{+}, \mathbb{P} \otimes A^{-} \ll \mathbb{P} \otimes \operatorname{Var}(A) \quad \text { and } \quad\left(\mathbb{P} \otimes A^{+}\right)+\left(\mathbb{P} \otimes A^{-}\right)=\mathbb{P} \otimes \operatorname{Var}(A) . \tag{25}
\end{equation*}
$$

Hence there exist $\bar{D}^{+} \in \mathcal{P}$ and $\bar{D}^{-}=\bar{\Omega} \backslash \bar{D}^{+}$such that

$$
\begin{align*}
& \mathbb{P} \otimes A^{+}=\mathbb{1}_{\bar{D}^{+}}(\mathbb{P} \otimes \operatorname{Var}(A))=\mathbb{P} \otimes\left(\mathbb{1}_{\bar{D}^{+}} \bullet \operatorname{Var}(A)\right), \\
& \mathbb{P} \otimes A^{-}=\mathbb{1}_{\bar{D}^{-}}(\mathbb{P} \otimes \operatorname{Var}(A))=\mathbb{P} \otimes\left(\mathbb{1}_{\bar{D}^{-}} \bullet \operatorname{Var}(A)\right) . \tag{26}
\end{align*}
$$

By part (a), it follows that $A^{+}=\mathbb{1}_{\bar{D}^{+}} \bullet \operatorname{Var}(A)$ and $A^{-}=\mathbb{1}_{\bar{D}^{-}} \bullet \operatorname{Var}(A)$.
Next, if there exist predictable processes $H^{+}, H^{-} \in L(\langle M\rangle)$ such that

$$
\begin{equation*}
A_{t}^{+}=\int_{0}^{t} H_{s}^{+} \mathrm{d}\langle M\rangle_{s} \quad \text { and } \quad A_{t}^{-}=\int_{0}^{t} H_{s}^{-} \mathrm{d}\langle M\rangle_{s}, \quad t \in[0, T], \tag{27}
\end{equation*}
$$

we are done by setting $H:=H^{+}-H^{-}$. So, seeking a contradiction, assume without loss of generality that there does not exist $H^{+} \in L(\langle M\rangle)$ such that $A^{+}=\int H^{+} \mathrm{d}\langle M\rangle$. Then by part (b), there exists $\widetilde{H}^{+} \in L(\langle M\rangle)$ and $\bar{N}^{+} \in \mathcal{P}$ such that

$$
\begin{equation*}
A_{t}^{+}=\int_{0}^{t} \widetilde{H}_{s}^{+} \mathrm{d}\langle M\rangle_{s}+\int_{0}^{t} \mathbb{1}_{\bar{N}^{+}} \mathrm{d} A_{s}^{+} \quad \text { and } \quad \int_{0}^{t} \mathbb{1}_{\bar{N}^{+}} \mathrm{d}\langle M\rangle_{s}=0, \quad t \in[0, T], \tag{28}
\end{equation*}
$$

with $\mathbb{P}\left[\int_{0}^{T} \mathbb{1}_{\bar{N}^{+}} \mathrm{d} A_{s}^{+}>0\right]>0$. (Otherwise, we could set $H^{+}:=\widetilde{H}^{+}$.) Define the strategy $\vartheta=\left(\vartheta_{t}\right)_{t \in[0, T]}$ by $\vartheta:=\mathbb{1}_{\bar{N}^{+}} \mathbb{1}_{\bar{D}^{+}}$. Then $\vartheta \in L(S)$ as it is predictable and bounded, and it satisfies $\vartheta \bullet M \equiv 0$ as

$$
\begin{equation*}
\vartheta \bullet\langle M\rangle=\left(\mathbb{1}_{\bar{N}^{+}} \mathbb{1}_{\bar{D}^{+}}\right) \bullet\langle M\rangle=\mathbb{1}_{\bar{D}^{+}} \bullet\left(\mathbb{1}_{\bar{N}^{+}} \bullet\langle M\rangle\right)=\mathbb{1}_{\bar{D}^{+}} \bullet 0 \equiv 0 . \tag{29}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
\vartheta \bullet A & =\vartheta \bullet A^{+}-\vartheta \bullet A^{-} \\
& =\left(\mathbb{1}_{\bar{N}^{+}} \mathbb{1}_{\bar{D}^{+}}\right) \bullet\left(\mathbb{1}_{\bar{D}^{+}} \bullet \operatorname{Var}(A)\right)-\left(\mathbb{1}_{\bar{N}^{+}} \mathbb{1}_{\bar{D}^{+}}\right) \bullet\left(\mathbb{1}_{\bar{D}^{-}} \bullet \operatorname{Var}(A)\right) \\
& =\mathbb{1}_{\bar{N}^{+}} \bullet\left(\left(\mathbb{1}_{\bar{D}^{+}} \mathbb{1}_{\bar{D}^{+}}\right) \bullet \operatorname{Var}(A)\right)-\mathbb{1}_{\bar{N}^{+}} \bullet\left(\left(\mathbb{1}_{\bar{D}^{+}} \mathbb{1}_{\bar{D}^{-}}\right) \bullet \operatorname{Var}(A)\right) \\
& =\mathbb{1}_{\bar{N}^{+}} \bullet\left(\mathbb{1}_{\bar{D}^{+}} \bullet \operatorname{Var}(A)\right)-\mathbb{1}_{\bar{N}^{+}} \bullet(0 \bullet \operatorname{Var}(A)) \\
& =\mathbb{1}_{\bar{N}^{+}} \bullet A^{+}-\mathbb{1}_{\bar{N}^{+}} \bullet 0=\mathbb{1}_{\bar{N}^{+}} \bullet A^{+} . \tag{30}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\vartheta \bullet S=\mathbb{1}_{\bar{N}^{+}} \bullet A^{+} \geq 0 \quad \text { and } \quad \mathbb{P}\left[\vartheta \bullet S_{T}>0\right]=\mathbb{P}\left[\int_{0}^{T} \mathbb{1}_{\bar{N}^{+}} \mathrm{d} A_{s}^{+}>0\right]>0 . \tag{31}
\end{equation*}
$$

Thus ϑ is 0 -admissible and S fails NA for 0 -admissible strategies, in contradiction to the hypothesis.
(a) First, we show existence of a strong solution. To this end, note that $\mu \in L_{\text {loc }}^{2}\left(\left(W_{s}\right)_{s \in[0, t]}\right)$ for all $t<1$ and define the process $\bar{Z}=\left(\bar{Z}_{t}\right)_{t \in[0,1)}$ by

$$
\begin{equation*}
\bar{Z}_{t}=\mathcal{E}\left(-\int_{0} \mu_{s} \mathrm{~d} W_{s}\right)_{t}=\exp \left(-\int_{0}^{t} \mu_{s} \mathrm{~d} W_{s}-\frac{1}{2} \int_{0}^{t} \mu_{s}^{2} \mathrm{~d} s\right), \quad t<1 \tag{32}
\end{equation*}
$$

Then for fixed $t \in(0,1)$ the process \bar{Z} restricted to $[0, t]$ is a strictly positive continuous local martingale and the unique strong solution on $[0, t]$ to the SDE

$$
\begin{equation*}
\mathrm{d} Z_{t}=-Z_{t} \mu_{t} \mathrm{~d} W_{t}, \quad Z_{0}=1 \tag{33}
\end{equation*}
$$

By Fatou's lemma, it follows that \bar{Z} is a strictly positive supermartingale on $[0, t]$ for each fixed $t<1$ and therefore also on $[0,1)$. By the supermartingale convergence theorem, $\lim _{t \uparrow 1} \bar{Z}_{t}$ exists P-a.s. Define the process $Z=\left(Z_{t}\right)_{t \in[0,1]}$ by $Z_{t}:=\bar{Z}_{t}$ for $t<1$ and $Z_{1}:=$ $\lim _{t \rightarrow 1} \bar{Z}_{t}$. Clearly Z is continuous, adapted and nonnegative. To show that it is a local martingale, define for $n \in \mathbb{N}$ the stopping time

$$
\begin{equation*}
\tau_{n}:=\inf \left\{t \in[0,1): Z_{t}>n\right\} \wedge 1 \tag{34}
\end{equation*}
$$

Then $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of stopping times with $\lim _{n \rightarrow \infty} \mathbb{P}\left[\tau_{n}=1\right]=1$. We proceed to show that for each fixed $n \in \mathbb{N}, Z^{\tau_{n}}$ is a uniformly integrable martingale on $[0,1]$. Since Z is a supermartingale, this is equivalent to showing that $\mathbb{E}\left[Z_{\tau_{n}}\right]=\mathbb{E}\left[Z_{0}\right]=1$. To this end, note that $Z^{\tau_{n}}$ is uniformly bounded by n. Moreover, for each fixed $m \in \mathbb{N}, Z^{\tau_{n} \wedge \frac{m-1}{m}}$ is a bounded local and hence uniformly integrable martingale on $\left[0, \frac{m-1}{m}\right]$. This implies in particular that $\mathbb{E}\left[Z_{\tau_{n} \wedge \frac{m-1}{m}}\right]=1$. Now dominated convergence shows that $\mathbb{E}\left[Z_{\tau_{n}}\right]=1$.
To show that Z satisfies (33) on $[0,1]$, let $M \in \mathcal{H}_{0}^{2, c}$ be arbitrary. Then the fact that Z satisfies (33) on $[0, t]$ for each fixed $t \in(0,1)$ gives

$$
\begin{aligned}
\langle Z, M\rangle_{t} & =\int_{0}^{t}-Z_{s} \mu_{s} \mathrm{~d}\langle W, M\rangle_{s}, \quad t<1 \\
\langle Z, Z\rangle_{t} & =\int_{0}^{t} Z_{s}^{2} \mu_{s}^{2} \mathrm{~d} s, \quad t<1
\end{aligned}
$$

Then monotone convergence gives

$$
\begin{equation*}
\int_{0}^{1} Z_{s}^{2} \mu_{s}^{2} \mathrm{~d} s=\langle Z, Z\rangle_{1}<\infty \text { P-a.s. } \tag{35}
\end{equation*}
$$

and this together with the Kunita-Watanabe inequality and dominated convergence gives

$$
\begin{equation*}
\langle Z, M\rangle_{1}=\int_{0}^{1}-Z_{s} \mu_{s} \mathrm{~d}\langle W, M\rangle_{s} \tag{36}
\end{equation*}
$$

Since $M \in \mathcal{H}^{2, c}$ was arbitrary, Z solves (33) on $[0,1]$ by the definition of the stochastic integral.
Next, we show uniqueness. So suppose that Z^{1} and Z^{2} are solutions of (33) on $[0,1]$. Then they are a fortiori solutions of (33) on $[0, t]$ for each fixed $t \in(0,1)$. But for each fixed $t \in(0,1)$, the solution of (33) is unique, and so Z^{1} and Z^{2} coincide on $[0, t]$ for each fixed $t \in(0,1)$, and by continuity also on $[0,1]$.
(b) Let $\widetilde{Z}=\left(\widetilde{Z}_{t}\right)_{t \in[0,1]}$ be a local P-martingale for the filtration $\left(\mathscr{F}_{t}^{W}\right)_{t \in[0,1]}$ with $\widetilde{Z}_{0}=1$ such that $\widetilde{Z} S$ is also local P-martingale for the filtration $\left(\mathscr{F}_{t}^{W}\right)_{t \in[0,1]}$. By Itô's representation
theorem, we may assume that \widetilde{Z} has continuous paths and that there exists a predictable process $\widetilde{H} \in L_{\text {loc }}^{2}(W)$ such that

$$
\begin{equation*}
\widetilde{Z}_{s}=1+\int_{0}^{t} \widetilde{H}_{s} \mathrm{~d} W_{s}, \quad t \in[0,1] \tag{37}
\end{equation*}
$$

Now the product rule gives

$$
\begin{equation*}
\widetilde{Z}_{t} S_{t}-\widetilde{Z}_{0} S_{0}=\int_{0}^{t} S_{s} \mathrm{~d} \widetilde{Z}_{s}+\int_{0}^{t} \widetilde{Z}_{s} S_{s} \mathrm{~d} W_{s}+\int_{0}^{t} \widetilde{Z}_{s} S_{s} \mu_{s} \mathrm{~d} s+\int_{0}^{t} \widetilde{H}_{s} S_{s} \mathrm{~d} s, \quad t \in[0, T] \tag{38}
\end{equation*}
$$

Since $\widetilde{Z} S-\widetilde{Z}_{0} S_{0}, \int S \mathrm{~d} \widetilde{Z}$ and $\int \widetilde{Z} S \mathrm{~d} W$ are continuous local martingales null at 0 , if follows that $\int(\widetilde{Z} S \mu+\widetilde{H} S) \mathrm{d} s$ is a continuous local martingale null at 0 . Since it is of finite variation it must be constant 0 . But this implies that for a.a. $\omega, \widetilde{Z} S \mu+\widetilde{H} S$ is 0 a.e. on $[0,1]$. Since S is strictly positive the same is true for $\widetilde{Z} \mu+\widetilde{H}$. But his implies that $\int(\widetilde{Z} \mu+\widetilde{H})^{2} \mathrm{~d} s$ is constant 0 and hence $\int \widetilde{H} \mathrm{~d} W=\int(-\widetilde{Z} \mu) \mathrm{d} W$, which shows that \widetilde{Z} solves (33) on $[0,1]$. By uniqueness of the solution, we may deduce that $\widetilde{Z}=Z$.
(c) Define $\mathbb{Q} \ll \mathbb{P}$ on \mathscr{F}_{1} by $\mathrm{dQ}:=Z_{1} \mathrm{~d} P$. Note that since Z is strictly positive on $[0,1)$, $\mathbb{Q} \approx \mathbb{P}$ on $\mathscr{F} t$ for all $t \in(0,1)$. Moreover, S is a local \mathbb{Q}-martingale by part (b). It suffices to show that all $\vartheta \in \Theta_{\text {adm }}$ with $\vartheta \bullet S_{1} \geq 0 \mathbb{P}$-a.s. satisfy $\vartheta \bullet S_{1}=0 \mathbb{P}$-a.s. So let $\vartheta \in \Theta_{\mathrm{adm}}$ with $\vartheta \bullet S_{1} \geq 0 \mathbb{P}-a . s$. Then by absolute continuity, $\vartheta \bullet S_{1} \geq 0 \mathbb{Q}$-a.s. and hence $\vartheta \bullet S \equiv 0$ by the fact that $\vartheta \bullet S$ is a Q-supermartingale (by Ansel-Stricker and Fatou) with $\vartheta \bullet S_{0}=0$. But since $\mathbb{Q} \approx \mathbb{P}$ on \mathscr{F} for all $t \in[0,1)$, this implies that $\vartheta \bullet S_{t}=0 \mathbb{P}$-a.s. for all $t \in[0,1)$, and continuity of $\vartheta \bullet S$ gives $\vartheta \bullet S_{1}=0 \mathbb{P}$-a.s.
(d) By the fundamental theorem of asset pricing, S satisfies NFLVR if and only if there exists a strictly positive \mathbb{P}-martingale $\widetilde{Z}=\left(\widetilde{Z}_{t}\right)_{t \in[0,1]}$ with $\widetilde{Z}_{0}=1$ such that $\widetilde{Z} S$ is a local \mathbb{P} martingale. But if \widetilde{Z} exists, then part b) shows that $\widetilde{Z}=Z$. This establishes the claim.
(e) First, note that the process \widetilde{Z} is well defined by part (a) since

$$
\begin{equation*}
\int_{0}^{1} \frac{1}{\sqrt{1-s}} \mathrm{~d} s=2<\infty \quad \text { and } \quad \int_{0}^{t} \frac{1}{1-s} \mathrm{~d} s=\log \left(\frac{1}{1-t}\right)<\infty, \quad t \in(0,1) \tag{39}
\end{equation*}
$$

Next, note that $Z=\widetilde{Z}^{\tau}$ and $\sup _{t \in[0,1]} Z_{t} \leq 2 \mathbb{P}$-a.s., which shows that Z is a bounded local and hence true \mathbb{P}-martingale. Moreover, $Z_{\tau}=0$ on $\{\tau=1\}$ (since $\widetilde{Z}_{1}=0 \mathbb{P}$-a.s.) and $Z_{\tau}=2$ on $\{\tau<1\}$, which implies that $\mathbb{P}\left[Z_{1}=0\right]=\mathbb{P}\left[Z_{1}=2\right]=1 / 2$ by the fact that

$$
\begin{equation*}
1=\mathbb{E}\left[Z_{1}\right]=0 \times \mathbb{P}\left[Z_{1}=0\right]+2 \times \mathbb{P}\left[Z_{1}=2\right] \tag{40}
\end{equation*}
$$

Now the claim follows immediately from part (c) and part (d).

