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Solution 3-1

(a) “⇒”: This is trivial, as every martingale is by definition integrable.
“⇐”: Let (τn)n∈N be a localising sequence for X. First, we show by backward induction
that

X−k ∈ L
1(P) for all k = T, . . . , 0.

The induction basis is trivial. For the induction step, let 1 ≤ k ≤ T and suppose that
X−k ∈ L1(P). Fix n ∈ N, Then (Xτn)− is a submartingale as the function x 7→ x− is
convex and E[(Xτn

k )−] ≤ E[|Xτn
k |] < ∞ since Xτn is a martingale and hence integrable.

The submartingale property yields

X−k−11{τn>k−1} = (Xτn
k−1)

−1{τn>k−1} ≤ E[(Xτn
k )− | Fk−1]1{τn>k−1}

= E[(Xτn
k )−1{τn>k−1} | Fk−1] = E[X−k 1{τn>k−1} | Fk−1]

= E[X−k | Fk−1]1{τn>k−1} P-a.s. (1)

Letting n → ∞ shows that X−k−1 ≤ E[X−k | Fk−1] and taking expectations yields X−k−1 ∈
L1(P). Next, we show that also X is integrable. To this end fix 0 ≤ k ≤ T . Since
X− is integrable, the expectation E[Xk] is well-defined (it may be +∞). Using that
Xτn
k ≥ −

∑T
j=0(Xj)

− ∈ L1(P), we may apply Fatou’s lemma and get

E[Xk] ≤ lim inf
n→∞

E[Xτn
k ] = E[X0] = 0.

Finally, we show that X is a martingale. The integrability of X implies the integrability
of the maximum process since

max
j∈{0, ... ,k}

|Xj | ≤
k∑
`=0

|X`| ∈ L1(P) for k = 0, . . . , T. (2)

Thus, by dominated convergence

E
[
Xk+1

∣∣Fk

]
= lim

n→∞
E
[
Xτn
k+1

∣∣Fk

]
= lim

n→∞
Xτn
k = Xk P-a.s. (3)

(b) First, suppose that X is a local martingale. Let (τn)n∈N be a localising sequence for X.
Let ϑ be a predictable process such that (ϑ •X)−T ∈ L1(P). For n ∈ N, define the stopping
time

σn := inf{k ≥ 0 : |ϑk+1| ≥ n}. (4)

Note that this is indeed a stopping time because ϑ is predictable. Then (σn)n∈N is increas-
ing to +∞ P-a.s. For n ∈ N, define the stopping time ρn := τn ∧ σn. Then (ρn)n∈N is in-
creasing to +∞ P-a.s. Moreover, for each n ∈ N, Xρn is a martingale and |ϑk|1{k≤ρn} ≤ n,



k ∈ {0, . . . , T}. Therefore, for each n ∈ N, (ϑ •X)ρn is a martingale null at 0. Indeed, for
k ∈ {1, . . . , T},

E[|(ϑ •X)ρnk |] = E
[∣∣∣ k∑

j=1

ϑj1{j≤ρn}∆X
ρn
k

∣∣∣] ≤ n k∑
j=1

E[|∆Xρn
j |] <∞,

E[(ϑ •X)ρnk − (ϑ •X)ρnk−1 | Fk−1] = E[ϑk∆X
ρn
k | Fk−1]

= ϑkE[∆Xρn
k | Fk−1] = 0 P-a.s. (5)

Thus ϑ • X is a local martingale with (ϑ •X)−T ∈ L1(P). By part (a) it is even a true
martingale and thus ϑ •XT ∈ L1(P) and E[ϑ •XT ] = 0.
Conversely, assume the stated condition. Let (τn)n∈N be a sequence of stopping times,
which is P-a.s. increasing to +∞, such that Xτn is integrable for all n ∈ N. We proceed
to show that for each n ∈ N, Xτn is a martingale, and so X is a local martingale. To this
end, let k ∈ {0, . . . , T − 1} and A ∈ Fk be arbitrary. Define the process ϑ = (ϑj)j=0,...,T

by

ϑj :=

{
1A∩{k+1≤τn}, if j = k + 1,

0, else.
(6)

Since τn is a stopping time, A∩{k+ 1 ≤ τn} ∈ Fk, and hence ϑ is predictable. Next, note
that

ϑ •XT = 1A∩{k+1≤τn}∆Xk+1 = 1A∆Xτn
k+1,

This implies in particular that ϑ •XT is integrable, and hence by assumption,

E[1A∆Xτn
k+1] ≤ 0 (7)

The same argument with −ϑ instead of ϑ, show that

E[−1A∆Xτn
k+1] ≤ 0. (8)

and thus we may conclude that E[1A∆Xτn
k+1] = 0 Since A ∈ Fk was arbitrary, this implies

that E[∆Xτn
k+1 | Fk] = 0 . Since k ∈ {0, . . . , T − 1} was arbitrary, we conclude that Xτn is

a martingale.

Solution 3-2

(a) For n ∈ N, define the stopping time τn := inf{t > 0 : Xt < 1/n}. Then by right-continuity
of X, Xτn ≤ 1/n on {τn < ∞} for n ∈ N. Hence, by the optional stopping theorem, for
all n ∈ N,

E[Xt1{τn≤t}] ≤ E[Xτn1{τn≤t}] ≤ 1/n, t ≥ 0. (9)

Since τ0 = limn→∞ τn P-a.s., nonnegativity of X and dominated convergence give

E[Xt1{τ0≤t}] = 0, t ≥ 0. (10)

This implies that Xt = 0 on {τ0 ≤ t} P-a.s. for each t ≥ 0, and right-continuity of X
establishes the claim.

(b) First, note that since X is a strictly positive local martingale, it is a strictly positive
supermartingale by Fatou’s lemma and hence X− > 0 P-a.s. by part (a). This implies that
the process 1

X−
is well-defined. Since it is adapted and left-continuous, it is in addition

predictable and locally bounded. Hence by the hint, the process M = (Mt)t≥0 defined by

Mt :=

∫ t

0

1

Xs−
dXs, t ≥ 0, (11)



is well defined and a local martingale. Moreover, associativity of the stochastic integral
gives ∫ t

0
Xs− dMs =

∫ t

0

Xs−
Xs−

dXs = Xt −X0 = Xt − 1, t ≥ 0. (12)

This shows existence of M .
To establish uniqueness, suppose that M̃ is a local martingale null at 0 such thatX = E(M̃).
Then associativity of the stochastic integral together with the definition of the stochastic
exponential give

M̃t =

∫ t

0

1

Xs−
Xs− dMs =

∫ t

0

1

Xs−
dXs = Mt, t ≥ 0. (13)

Solution 3-3

(a) Recall that we can write N = N c + Nd + NFV , where N c ∈ H2,c
0,loc, N

d ∈ H2,d
0,loc and

NFV is a local martingale of finite variation and null at 0. (More precisely, as N is a
semimartingale we can write N = N1 +N2, where N1 ∈ H2

0,loc and N
2 is adapted, of finite

variation and null at 0. Since both N and N1 are local martingales, the same is true for
NFV := N2. Decomposing N1 = N c + Nd, where N c ∈ H2,c

0,loc, N
d ∈ H2,d

0,loc, establishes
the claim.)

Note that since M ∈ H2,c
0,loc and (NFV )c = 0,

[M,Nd] ≡ 0 and [M,NFV ] =
∑

∆M∆NFV ≡ 0. (14)

Now applying the usual Kunita-Watanabe decomposition to N c, we get H ∈ L2
loc(M)

and Lc ∈ H2,c
0,loc such that N c = H • M + Lc and [M,Lc] = 〈M,Lc〉 ≡ 0. Now set

L := Lc +Nd +NFV . Then L is a local martingale, N = H •M + L and

[M,L] = [M,Lc] + [M,Nd] + [M,NFV ] ≡ 0. (15)

(b) First, assume that S satisfies SC, and let H ∈ L2
loc(M) be such that A =

∫
H d〈M〉. Then

−H •M is a continuous local martingale null at 0. Set Z := E(−H •M). Then Z is a
strictly positive continuous local martingale with Z0 = 1. We show that Z is an equivalent
local martingale deflator. By the product rule and the structure condition,

d(ZtSt) = St dZt + Zt dSt + d〈Z, S〉t
= St dZt + Zt dMt + Zt dAt − ZtHt d〈M,M〉t
= St dZt + Zt dMt. (16)

Since Zt and M are continuous local martingales,
∫
S dZ and

∫
Z dM are so, too, and this

establishes the claim. Conversely, assume that there exists an equivalent local martingale
deflator Z for S. The by Exercise 3-2 (b), we can write Z = E(N), where N = (Nt)t≥0
is a local martingale null at 0. By part (a), we may write – using a change of sign for
convenience – N = −H •M +L, where H ∈ L2

loc(M) and L = (Lt)t≥0 is a local martingale
null at 0 and such that [M,L] ≡ 0 . Then by the product rule and using that [M,L] ≡ 0,

d(ZtSt) = St− dZt + Zt− dSt + d[Z, S]t
= St− dZt + Zt− dMt + Zt− dAt − Zt−Ht d[M,M ]t + Zt− d[M,L]t
= St− dZt + Zt− dMt + Zt− dAt − Zt−Ht d〈M,M〉t. (17)

Since ZS is a local martingale by hypothesis and
∫
S− dZ and

∫
Z− dM are local martin-

gales as integrals of a locally bounded process against a local martingale, it follows that



∫
Z− dA −

∫
Z−H d〈M,M〉 is a local martingale, too. As it is continuous, of finite vari-

ation and null at 0, it is 0 identically. Since 1/Z− is predictable and locally bounded,
associativity of the stochastic integral gives

At =

∫ t

0

1

Zs−
Zs− dAs =

∫ t

0

1

Zs−
Zs−Hs d〈M,M〉s =

∫ t

0
Hs d〈M,M〉s. (18)

This shows that S satisfies SC.

Solution 3-4

(a) Define the process R = (Rt)t∈[0,T ] by

Rt := µt+
σ√
λ
Ñt = µt+

σ√
λ

(Nt − λt) = (µ− σ
√
λ)t+

σ√
λ
Nt

=
σ√
λ

(Nt − `t), t ∈ [0, T ], (19)

where ` := λ − µ
σ

√
λ. It follows from Exercise 1-5 (b) that S fails NA, and a fortiori

NFLVR, if the paths of R are monotone, i.e., if ` ≤ 0. On the other hand, if ` > 0, define
the measure Qλ ≈ P on FT by

dQλ

dP
= exp

(
NT∑
k=1

log
`

λ
+ (λ− `)T

)
. (20)

Then it follows from Exercise 1-4 that under Qλ, R = σ√
λ
ÑQ

λ , where NQλ := N is a
Poisson process with rate `. Since R is a Qλ-martingale, it follows from Exercise 1-5 (a)
that S is so, too.

(b) Since S admits a unique equivalent martingale measure Qλ, the arbitrage-free price of
1{ST>K} is given by

EQλ [1{ST>K}] = Qλ[ST > K]

= Qλ
[
S0 exp

(
log

(
1 +

σ√
λ

)
NQ

λ

T − σ`√
λ
T

)
> K

]

= Qλ

NQλT >
log K

S0
+ σ`√

λ
T

log
(

1 + σ√
λ

)


= Ψ(λ−µσ
√
λ)T

 log K
S0

+
(
σ
√
λ− µ

)
T

log
(

1 + σ√
λ

)
 . (21)

(c) First, define Q̃λ ≈ Qλ on FT by dQ̃λ

dQλ
:= ST /S0. Note that

ST /S0 = E(R)T = exp

NQ
λ

T∑
k=1

log
˜̀̀

+ (`− ˜̀)T
 , (22)

where ˜̀ :=
(

1 + σ√
λ

)
`. Now it follows from Exercise 1-4 that under Q̃λ,

Rt =
σ√
λ
N Q̃

λ

t − σ√
λ
`t, t ∈ [0, T ], (23)



where N Q̃λ is a Poisson process with rate ˜̀.
Next, since S admits a unique equivalent martingale measure Qλ, the arbitrage-free price
of ST1{ST>K} is given by EQλ [ST1{ST>K}]. By Bayes’ formula and the above and noting
that under Q̃λ, the calculation is exactly the same as in part (b),

EQλ [ST1{ST>K}] = E
Q̃λ

[S01{ST>K}] = S0Q̃
λ[ST > K]

= S0Ψ(1+ σ√
λ

)
(λ−µσ

√
λ)T

 log K
S0

+
(
σ
√
λ− µ

)
T

log
(

1 + σ√
λ

)
 . (24)

(d) First, it follows immediately from parts (b) and (c) that

Cλ0 = EQλ [(ST −K)+] = EQλ [ST1{ST>K}]−KEQλ [1{ST>K}]

= S0Ψ(1+ σ√
λ

)
(λ−µσ

√
λ)T

 log K
S0

+
(
σ
√
λ− µ

)
T

log
(

1 + σ√
λ

)


−KΨ(λ−µσ
√
λ)T

 log K
S0

+
(
σ
√
λ− µ

)
T

log
(

1 + σ√
λ

)
 . (25)

Next, for ρ > 0, let Fρ be the distribution function of Xρ−ρ√
ρ , where Xρ is Poisson distributed

with parameter ρ. Moreover, set F ρ := 1 − Fρ and Φ = 1 − Φ. Then by the hint,
Fρ converges pointwise to Φ as ρ → ∞, and the convergence is even uniform as Φ is
continuous. Thus F ρ converges uniformly to Φ as ρ→∞. Now the claim follows from the
fact that Ψρ(x) = F ρ

(
x−ρ√
ρ

)
, the fact that Φ(x) = Φ(−x) and the limits

lim
λ→∞

log

(
1 +

σ√
λ

)√(
λ− µ

σ

√
λ
)
T = σ

√
T ,

lim
λ→∞

log

(
1 +

σ√
λ

)√(
1 +

σ√
λ

)(
λ− µ

σ

√
λ
)
T = σ

√
T ,

lim
λ→∞

((
σ
√
λ− µ

)
T − log

(
1 +

σ√
λ

)(
λ− µ

σ

√
λ
)
T

)
=
σ2

2
T,

lim
λ→∞

((
σ
√
λ− µ

)
T − log

(
1 +

σ√
λ

)(
1 +

σ√
λ

)(
λ− µ

σ

√
λ
)
T

)
= −σ

2

2
T, (26)

where we have used that

log

(
1 +

σ√
λ

)
=

σ√
λ
− σ2

2λ
+O

(
1

λ3/2

)
,√

λ− µ

σ

√
λ =
√
λ

√
1 +O

(
1√
λ

)
,√(

1 +
σ√
λ

)(
λ− µ

σ

√
λ
)

=
√
λ

√
1 +O

(
1√
λ

)
. (27)

Remark: More generally, one can show that if Nλ is a Poisson process with rate λ, then
the normalised compensated Poisson process Ñλ

√
λ
converges weakly to a standard Brownian

motion. But this is of course much more difficult.



Solution 3-5

(a) The idea is to change the jump intensity of N to ` using Exercise 1-4 and then the drift of
R to −a` using Girsanov’s theorem. To this end, note that

Rt = a(Nt − `t) + σ

(
Wt +

µ+ a`

σ
t

)
. (28)

Define the measure P` ≈ P on FT by

dP`

dP
:= exp

(
NT∑
k=1

log
`

λ
+ (λ− `)T

)
. (29)

Then by Exercise 1-4, NP` := N is a Poisson process with rate ` under P`. Moreover,
as dP`

dP is a functional of N and N and W are independent under P, it follows that W is
a Brownian motion and independent from NP

` under P`, too. Next, define the measure
Q` ≈ P` ≈ P on FT by

dQ`

P`
:= E

(
−µ+ a`

σ
W

)
T

. (30)

Then by Girsanov’s theorem,WQ`

t := Wt+
µ+a`
σ t is a Brownian motion underQ`. Moreover,

as dQ`

dP`
is a functional of W , and NP

` and W are independent under P`, it follows that
WQ` is a Brownian motion and independent from NQ

`
:= NP

` under Q`, too.

(b) It suffices to show that
lim sup
`→∞

EQ` [1{ST>K}] = 0. (31)

First, fix ` > 0. Then by Exercise 1-4 and independence of WQ` and NQ` ,

EQ` [1{ST>K}]

= Q`
[
exp

(
σWQ`

T −
σ2

2
T + log(1 + a)NQ

`

T − a`T
)
>
K

S0

]

= Q`

NQ`T − `T >
log K

S0
− σWQ`

T + σ2

2 T + (a− log(1 + a))`T

log(1 + a)


≤ EQ`

[
Q`

[
|NQ

`

T − `T | >
log K

S0
− σw + σ2

2 T + (a− log(1 + a))`T

log(1 + a)

]∣∣∣∣∣w=WQ`

T

]

=

∫
R

Q`

[
|NQ

`

T − `T | >
log K

S0
−σw+σ2

2
T+(a−log(1+a))`T

log(1+a)

]
exp(−w2

2T )
√

2Tπ
dw. (32)

Now, for fixed w ∈ R, log K
S0
−σw+ σ2

2 T + (a− log(1 +a))`T > 0 for all ` sufficiently large
(since a− log(1 + a) > 0), and so by Chebychev’s inequality,

lim sup
`→∞

Q`

[
|NQ

`

T − `T | ≥
log K

S0
− σw + σ2

2 T + (a− log(1 + a))`T

log(1 + a)

]
(33)

≤ lim sup
`→∞

`T log(1 + a)2

(log K
S0
− σw + σ2

2 T + (a− log(1 + a))`T )2
= 0. (34)

This together with the above and dominated convergence establishes the claim.



(c) First, note that S/S0 = E(R) is a true nonnegative martingale with mean 1 by Exercise
1-5 (a). So for ` > 0 define Q̃` ≈ Q` on FT by dQ̃`

dQ`
:= ST /S0. Note that

ST /S0 = E(R)T = E(σWQ`)T exp

NQ
`

T∑
k=1

log
˜̀̀

+ (`− ˜̀)T
 , (35)

where ˜̀ := (1 + a)`. Now it follows as in part (a) that

Rt = σWQ`

t + aNQ
`

t − a`t = σ(W Q̃`

t + σt) + aN Q̃
`

t − a`t, t ∈ [0, T ], (36)

where W Q̃` is a Q̃`-Brownian motion and N Q̃` := NQ
` is a Q̃`-Poisson process with rate˜̀= (1 + a)` and W Q̃` and N Q̃` are independent under Q̃`.

So, for fixed ` > 0, by Bayes’ formula and independence of W Q̃` and N Q̃` under Q̃`,

EQ` [ST1{ST≤K}] = E
Q̃`

[S01{ST≤K}]

= S0Q̃
`

[
exp

(
σW Q̃`

T +
σ2

2
T + log(1 + a)N Q̃

`

T − a`T
)
≤ K

S0

]

= S0Q̃
`

N Q̃`T − ˜̀T ≤ log K
S0
− σW Q̃`

T −
σ2

2 T − (log(1 + a)(1 + a)− a)`T

log(1 + a)


≤ S0Q`

[
Q`

[
|N Q̃

`

T − ˜̀T | ≥ − log K
S0

+ σw + σ2

2 T + (log(1 + a)(1 + a)− a)`T

log(1 + a)

]∣∣∣∣∣w=W Q̃`

T

]

= S0

∫
R
Q`

[
|N Q̃

`

T − ˜̀T | ≥ − log K
S0

+σw+σ2

2
T+(log(1+a)(1+a)−a)`T
log(1+a)

]
exp(−w2

2T )
√

2Tπ
dw. (37)

Now, for fixed w ∈ R, − log K
S0

+ σw + σ2

2 T + (log(1 + a)(1 + a) − a)`T > 0 for all `
sufficiently large (since log(1 + a)(1 + a) − a > 0), and the claim follows by Chebychev’s
inequality and dominated convergence as in part (b).

(d) Since S0 + 1 • ST = ST ≥ (ST −K)+ P-a.s. and K + 0 • ST = K ≥ (K − ST )+, it follows
that Πs((ST −K)+) ≤ S0 and Πs((K − ST )+) ≤ K. On the other hand, by Theorem 4.4
in the lecture notes and parts (b) and (c),

Πs((ST −K)+) ≥ lim
`→∞

EQ` [(ST −K)+]

= lim
`→∞

EQ` [ST1{ST>K}]−K lim
`→∞

EQ` [1{ST>K}]

= S0 − lim
`→∞

EQ` [ST1{ST≤K}]− 0 = S0,

Πs((K − ST )+) ≥ lim
`→∞

EQ` [(K − ST )+]

= K lim
`→∞

EQ` [1{ST≤K}]− lim
`→∞

EQ` [ST1{ST≤K}]

= K −K lim
`→∞

EQ` [1{ST>K}]− 0 = K. (38)

Thus, Πs((ST −K)+) = S0 and Πs((K − ST )+) = K, i.e., the superreplication strategy is
the trivial buy-and-hold superhedge.


