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Solution 3-1

(a)

“=". This is trivial, as every martingale is by definition integrable.

“<" Let (Tm)new be a localising sequence for X. First, we show by backward induction
that
X, e L'(P) forallk=T,...,0.

The induction basis is trivial. For the induction step, let 1 < k < T and suppose that
X, € L'(P). Fixn € IN, Then (X™)~ is a submartingale as the function z — z~ is
convex and E[(X[")7] < E[|X]"|] < oo since X™ is a martingale and hence integrable.
The submartingale property yields

X Ursk—1y = (X)) Lrsw—1y S E(X) | Fr-1]lirse-1)
= E[(X") Lpok-1y | Fooa] = E[X Lir g1y | Fral
=E[X, [ Ze1]lr, 11y P-as. (1)

Letting n — oo shows that X, | < E[X, | .%;_1] and taking expectations yields X, ; €
L*(P). Next, we show that also X is integrable. To this end fix 0 < k < T. Since
X~ is integrable, the expectation E[X}] is well-defined (it may be +o00). Using that
X > - Z]T:O(Xj)_ € L'(P), we may apply Fatou’s lemma and get

E[Xy] < liminf BIX]"] = B[X,] = 0.

n—oo

Finally, we show that X is a martingale. The integrability of X implies the integrability
of the maximum process since

k
max | X;| < X, e LY(P) fork=0,...,T. 2
e,y Vol < 31X € L (w) )
Thus, by dominated convergence
E (X1 | F] = lim (X7 | F] = Jim X=X Peas. (3)

First, suppose that X is a local martingale. Let (7,),en be a localising sequence for X.
Let 9 be a predictable process such that (9 @ X)7 € L'(IP). For n € IN, define the stopping
time

op = inf{k > 0: |Up41] > n}. (4)
Note that this is indeed a stopping time because ¥ is predictable. Then (o, )nen is increas-

ing to +oo P-a.s. For n € IN, define the stopping time p,, := 7, A 0. Then (py,)nen is in-
creasing to +o0o IP-a.s. Moreover, for each n € IN, X?» is a martingale and |?9k|]1{k§pn} <n,



k € {0,...,T}. Therefore, for each n € IN, (¢ @ X)P" is a martingale null at 0. Indeed, for
ke{l,...,T},

k k
Bl o X)) = B[| Y 051 < AXE" || <0 Y BIAXE] < o,
j=1 j=1
E[(0 e X)0" — (90 X)P" | Fy 1] = B0 AXL" | Fp ]
= BE[AX]" | Fp_1] =0 P-as. (5)

Thus ¥ @ X is a local martingale with (J ¢ X); € L'(P). By part (a) it is even a true
martingale and thus ¥ ¢ X7 € L*(PP) and E[ ¢ X7] = 0.

Conversely, assume the stated condition. Let (7,,)nen be a sequence of stopping times,
which is P-a.s. increasing to 400, such that X™ is integrable for all n € IN. We proceed
to show that for each n € IN, X is a martingale, and so X is a local martingale. To this
end, let k € {0,...,T — 1} and A € %, be arbitrary. Define the process ¥ = (9;)j=0,... 7
by

1Aﬁ{k+1<7 }s 1f.7 =k+ 17
9= = 6
J {0, else. (6)

Since 7, is a stopping time, AN{k+1 < 7,} € %, and hence ¥ is predictable. Next, note
that
Vo Xr =1 an(ki1<r, ) AXk1 = LAAX]H ),

This implies in particular that 9 ¢ Xr is integrable, and hence by assumption,

E[1aAX]?,] <0 (7)

The same argument with — instead of 14, show that
E[-14AX;71,] <0. (8)

and thus we may conclude that E[14AX[ ] = 0 Since A € F was arbitrary, this implies
that E[AX;" | | #x] =0 . Since k € {0,...,T — 1} was arbitrary, we conclude that X is
a martingale.

Solution 3-2

(a)

For n € IN, define the stopping time 7, := inf{t > 0: X; < 1/n}. Then by right-continuity
of X, X, <1/non {r, < oo} for n € N. Hence, by the optional stopping theorem, for
all n € IN|

E[Xl, <p] < B[X, 1 cp] <1/n, >0, 9)

Since 19 = limy,_, o 7, PP-a.s., nonnegativity of X and dominated convergence give
E[Xil;<n] =0, t>0. (10)

This implies that X; = 0 on {7y < ¢} P-a.s. for each t > 0, and right-continuity of X
establishes the claim.

First, note that since X is a strictly positive local martingale, it is a strictly positive
supermartingale by Fatou’s lemma and hence X_ > 0 P-a.s. by part (a). This implies that

the process i is well-defined. Since it is adapted and left-continuous, it is in addition

predictable and locally bounded. Hence by the hint, the process M = (M;);>o defined by

t
1
M; = dX t>0 11
t /0 Xs— Sy — Y ( )



is well defined and a local martingale. Moreover, associativity of the stochastic integral
gives

t t

X,

/XS_dMS:/ XS dXs =X —Xo=X; -1, t>0. (12)
0 0 s—

This shows existence of M.

To establish uniqueness, suppose that M is a local martingale null at 0 such that X = & (M ).
Then associativity of the stochastic integral together with the definition of the stochastic
exponential give

N tq t 1
M, = X dM, = dX, = M, t>0. 13
t /0 Xs— S S A Xs— s [2) - ( )

Solution 3-3

(a)

Recall that we can write N = N¢ + N% + NFV where N¢ € H>¢  N? e #2¢ and

0,loc? 0,loc
NFV is a local martingale of finite variation and null at 0. (More precisely, as N is a
semimartingale we can write N = N' 4+ N?, where N! € ”H%,IOC and N? is adapted, of finite
variation and null at 0. Since both N and N! are local martingales, the same is true for
NFV .= N2, Decomposing N! = N¢ + N¢ where N¢ € H[Q)’foc, Nd ¢ H[Q)’ic, establishes
the claim.) ’ ’

Note that since M & 7-[(2)’

c
Joc

and (NFV)e =0,
[M,N=0 and [M,N"V]=Y AMAN'V =o. (14)

Now applying the usual Kunita-Watanabe decomposition to N€¢ we get H € LIQOC(M )

and L€ € H(Q)’foc such that N = H ¢ M + L¢ and [M,L°] = (M,L°) = 0. Now set
L:=L°+ N%+ NFV. Then L is a local martingale, N = H e M + L and

[M, L] = [M, L] + [M, N + [M,N*V] = 0. (15)

First, assume that S satisfies SC, and let H € L2 (M) be such that A= [ Hd(M). Then

loc

—H e M is a continuous local martingale null at 0. Set Z := £(—H o M). Then Z is a
strictly positive continuous local martingale with Zy = 1. We show that Z is an equivalent
local martingale deflator. By the product rule and the structure condition,

d(ZtSt) =5;dZ; + Z; dS; + d<Z, S)t
- St dZt + Zt th + Zt dAt - Zth d<M, M>t
= Sy dZ; + Zy dM;. (16)

Since Z; and M are continuous local martingales, f SdZ and f Z dM are so, too, and this
establishes the claim. Conversely, assume that there exists an equivalent local martingale
deflator Z for S. The by Exercise 3-2 (b), we can write Z = £(N), where N = (N¢)i>0
is a local martingale null at 0. By part (a), we may write — using a change of sign for
convenience — N = —H ¢ M + L, where H € L2 (M) and L = (L;)¢>0 is a local martingale

loc

null at 0 and such that [M, L] =0 . Then by the product rule and using that [M, L] =0,

d(ZtSt) = S;_dZ; + Z;_ dS; + d[Z, S]t
— 8, dZ + Zi_ M, + Zo_ d A, — Zo_ H, d[M, M), + Z,— d[M, L),
- St_ dZt + Zt_ th + Zt_ dAt - Zt_Ht d<M, M>t (17)

Since ZS is a local martingale by hypothesis and [ S_dZ and [ Z_ dM are local martin-
gales as integrals of a locally bounded process against a local martingale, it follows that



JZ_-dA - [ Z_Hd(M,M) is a local martingale, too. As it is continuous, of finite vari-
ation and null at 0, it is 0 identically. Since 1/Z_ is predictable and locally bounded,
associativity of the stochastic integral gives

t 1 t 1 t
A= / ——Z, dA, = / Zs-Hyd(M,M)s = / Hy d(M, M)s.  (18)
0 Zsf 0 ZS* 0

This shows that S satisfies SC.

Solution 3-4

(a) Define the process R = (R¢)ic[o,1] by

0' ~
Ry =put+ —=N; = ut +

= TN = (- oVt + N
- W(Nt — i), telo,T] (19)

where ¢ := X\ — £y/X. It follows from Exercise 1-5 (b) that S fails NA, and a fortiori
NFLVR, if the paths of R are monotone, i.e., if £ < 0. On the other hand, if ¢ > 0, define
the measure Q* ~ P on %7 by

A
dd?P = exp (z log ﬁ +(A=29) ) (20)

k=1

Then it follows from Exercise 1-4 that under Q*, R = \‘}N Ve , where N Q* .= Nisa

Poisson process with rate £. Since R is a Q*-martingale, it follows from Exercise 1-5 (a)
that S is so, too.

(b) Since S admits a unique equivalent martingale measure Q", the arbitrage-free price of
L(s,>Ky is given by

Eqx [Lis,>x3] = QST > K]
= [So exp <log <1 + U) N;‘QA — UET) > K]

VA VA
K ol
_ N}‘QA logs—o—k\f/\T
log (1 + %)
o logs+<a )\—M)T
CEATL e (14 )
VT
(c) First, define @ ~ Q* on .y by 4 dQ* := S7/S0. Note that
N;‘:?A ~
{ ~
Sr/So=ER)r=exp | Y log  + (£ =0T |, (22)
k=1
where £ := ( %) £. Now it follows from Exercise 1-4 that under (QA
Ri=-2N%_ T p e, (23)

VATV



where NQ" is a Poisson process with rate ‘.

Next, since S admits a unique equivalent martingale measure Q*, the arbitrage-free price
of Stlig,~Ky is given by Eqgx[ST1g,~ k] By Bayes’ formula and the above and noting

that under QA, the calculation is exactly the same as in part (b),

]EQ/\ [ST]I{ST>K}] = E@A [SO]I{ST>K}] = S()@)‘[ST > K]
logs—lf)—i- (Uﬁ—,u)T

=S¥, . . (24)
(H\ﬁ)()‘_%ﬁ):r log (1 + %)
(d) First, it follows immediately from parts (b) and (c) that
Co = Eqa[(Sr — K)'] = Ega[Srls,5x1) — KEa [L{s,>x3]
. logsﬁo+<aﬁ—u>T
=S¥ .
(1+%) (A 2vX)T log (1 N %>
o logsﬁo+<aﬁ—u>T
~ KV sy . )
log (1 + ﬁ)
Xp—p

Next, for p > 0, let F), be the distribution function of >

with parameter p. Moreover, set F, := 1 — F, and ® = 1 — ®. Then by the hint,
F, converges pointwise to ® as p — oo, and the convergence is even uniform as & is

, where X, is Poisson distributed

continuous. Thus Fp converges uniformly to ® as p — co. Now the claim follows from the

fact that W,(z) = F, (%), the fact that ®(z) = ®(—x) and the limits

- 7 _H _
/\h_{l;olog <1 + ﬁ) ()\ 0\5\> T=0oVT,

lim log <1+\%> \/<1+\%) (A— gﬁ)T:aﬁ,

Jim ((O’\/X—,u) T —log (1 v \%) (A— ﬁﬁ) T) - "22T,

lim ((aﬁ— u) T — log (1 + \%) (1 + \%) </\ - gﬁ) T) - —%T, (26)

where we have used that

1og<1+\%>:\%—;’i+0(£/2),
W:ﬁ 1+0(\1ﬂ>,

\/<1+\%>(A—Zﬁ>:ﬁ HO(\lﬁ)' 27)

Remark: More generally, one can show that if N A is a Poisson process with rate \, then

. . A .
the normalised compensated Poisson process % converges weakly to a standard Brownian

motion. But this is of course much more difficult.



Solution 3-5

(a) The idea is to change the jump intensity of N to ¢ using Exercise 1-4 and then the drift of
R to —af using Girsanov’s theorem. To this end, note that

R; = CL(Nt — Et) +o <Wt + Pt aet) . (28)
g

Define the measure P! ~ P on .Zr by

N
dPp* ( Loy
—— = exp E log—+A=0T]. (29)
dPP — A
Then by Exercise 1-4, N P .— N is a Poisson process with rate ¢ under P*. Moreover,

as % is a functional of N and N and W are independent under IP, it follows that W is

a Brownian motion and independent from N P’ under P!, too. Next, define the measure

Qf ~ P!~ P on Zr by

dQ’ l

% =€ (—““WV) . (30)
P o T

Y4
Then by Girsanov’s theorem, T/Vt(Q = Wt—i—%‘wt is a Brownian motion under Q¢. Moreover,
Y4
as % is a functional of W, and N¥ “and W are independent under P¢, it follows that
W® is a Brownian motion and independent from N Q" .= NP’ under Q¢ too.

(b) It suffices to show that
lim sup Eqe[1¢5,~x}] = 0. (31)

l—o0

First, fix £ > 0. Then by Exercise 1-4 and independence of We and N QE,
Eqe[1{s,>k}]

2 K
=Qf |:eXp (01/[/;9/Z — %T + log(1 + a)N;?Z — a€T> > S}
0

log SKO - O'W;;l + %QT + (a —log(1 + a))(T

= Q' [NY — T >
T log(1+ a)

log £ — ow + 5T + (a — log(1+ a))(T
log(1 + a)

S EQZ

Qf [w;‘?é — 7| >

4
w:W}Q ]

dw. (32)

2
exp(—g7)

2T

Y log Sio—aw+§T+(a—1og(1+a))eT
= ]RQ Ny — T > Toa(TTa)

Now, for fixed w € R, log 550 —ow+ %ZT—i— (a —log(1+a))¢T > 0 for all ¢ sufficiently large
(since a —log(1 + a) > 0), and so by Chebychev’s inequality,

log £ — gw + 2T + (a — log(1 + a))¢T

I ClINS o) > 250 2

1?15)21) Q [‘ T ‘ - log(l + CL) (33)
Tlog(1 + a)?

< lim sup (T log(1 +a) (34)

=0
t—oo  (log S% —ow + U—;T + (a —log(1 + a))¢T)?

This together with the above and dominated convergence establishes the claim.



(c) First, note that S/Sp = £(R) is a true nonnegative martingale with mean 1 by Exercise
1-5 (a). So for £ > 0 define Q' ~ Q¢ on .#r by % := S7/Sp. Note that

2
NZ ~
? ~
Sr/So = E(R)p = E(eW ) exp > log ; +(( =0T |, (35)
k=1

where ¢ := (1 + a)l. Now it follows as in part (a) that

R, = O'Wth + aNtQE —alt = U(WtQZ +ot) + aNtQE —alt, te][0,T], (36)

where W€ is a @Z—ﬁrownian~motion and NQ .= NQ is a Qe—Poisson process with rate
(= (1+a)l and W' and NQ are independent under Q.

So, for fixed ¢ > 0, by Bayes’ formula and independence of WQ and NQ under Q’e )

Eqc[Stl{s,<K}] = Ege[Solis, <kl

~, i @g 0'2 @Z K
= 50Q" |exp | oW + ?T +log(l+a)Ny —alT | < 5%

~ [ ~ log & — VVQZ—"—2 — (log(14+a)(14+a)—a)lT
= SOQK N:;?Z —IT< &5, — 9T 2 (log( )( ) )

log(1 + a)
[ 50~ —log £ + ow+ ZT + (log(1 + a)(1 + a) — a)lT
< 50Q° |Qf [|INY — 71| > So 2 .
< 5Q|Q [‘ T e log(1 + a) w:nge
V) Qo —log Sﬁo+0w+0—22T+(10g(1+a)(1+a)—a)ET exp(—g’i)

= SO R Q |NT — £T| 2 log(1+a) T dw. (37)

Now, for fixed w € R, —logsﬁ0 + ow + %QT + (log(1 + a)(1 +a) —a)lT > 0 for all ¢
sufficiently large (since log(1l + a)(1 + a) —a > 0), and the claim follows by Chebychev’s
inequality and dominated convergence as in part (b).

Since So+1e Sy =Sr > (S — K)* P-as. and K +0e Sy = K > (K — St)™, it follows

that Is((St — K)) < Sp and II;((K — Sr)*) < K. On the other hand, by Theorem 4.4
in the lecture notes and parts (b) and (c),

M,((Sr — K)*) > lim Ege[(Sr — K)*]
{—00
= Zlirgo EQE [ST]l{ST>K}] - Kélirgo EQZ [H{ST>K}]
=50 — éli)rglo Eqe[STl{s,<K}] — 0 = So,
(K = S7)%) > lim Eqe[(K — S7)"]
{—00
= Kgliglo EQE []I{STSK}] — Eli{go EQF [ST]I{STgK}]

Thus, II;((ST — K)*) = Sy and Is((K — Sr)T) = K, i.e., the superreplication strategy is
the trivial buy-and-hold superhedge.



