Mathematical Finance

Exercise Sheet 3

Solution 3-1

(a) " \Rightarrow ": This is trivial, as every martingale is by definition integrable. " \Leftarrow ": Let $(\tau_n)_{n \in \mathbb{N}}$ be a localising sequence for X. First, we show by backward induction that

 $X_k^- \in L^1(\mathbb{P})$ for all $k = T, \dots, 0$.

The induction basis is trivial. For the induction step, let $1 \leq k \leq T$ and suppose that $X_k^- \in L^1(\mathbb{P})$. Fix $n \in \mathbb{N}$, Then $(X^{\tau_n})^-$ is a submartingale as the function $x \mapsto x^-$ is convex and $\mathbb{E}[(X_k^{\tau_n})^-] \leq \mathbb{E}[|X_k^{\tau_n}|] < \infty$ since X^{τ_n} is a martingale and hence integrable. The submartingale property yields

$$\begin{aligned} X_{k-1}^{-} \mathbb{1}_{\{\tau_n > k-1\}} &= (X_{k-1}^{\tau_n})^{-} \mathbb{1}_{\{\tau_n > k-1\}} \leq \mathbb{E}[(X_k^{\tau_n})^{-} \mid \mathscr{F}_{k-1}] \mathbb{1}_{\{\tau_n > k-1\}} \\ &= \mathbb{E}[(X_k^{\tau_n})^{-} \mathbb{1}_{\{\tau_n > k-1\}} \mid \mathscr{F}_{k-1}] = \mathbb{E}[X_k^{-} \mathbb{1}_{\{\tau_n > k-1\}} \mid \mathscr{F}_{k-1}] \\ &= \mathbb{E}[X_k^{-} \mid \mathscr{F}_{k-1}] \mathbb{1}_{\{\tau_n > k-1\}} \quad \mathbb{P}\text{-a.s.} \end{aligned}$$
(1)

Letting $n \to \infty$ shows that $X_{k-1}^- \leq \mathbb{E}[X_k^- \mid \mathscr{F}_{k-1}]$ and taking expectations yields $X_{k-1}^- \in L^1(\mathbb{P})$. Next, we show that also X is integrable. To this end fix $0 \leq k \leq T$. Since X^- is integrable, the expectation $\mathbb{E}[X_k]$ is well-defined (it may be $+\infty$). Using that $X_k^{\tau_n} \geq -\sum_{j=0}^T (X_j)^- \in L^1(\mathbb{P})$, we may apply Fatou's lemma and get

$$\mathbb{E}[X_k] \le \liminf_{n \to \infty} \mathbb{E}[X_k^{\tau_n}] = \mathbb{E}[X_0] = 0.$$

Finally, we show that X is a martingale. The integrability of X implies the integrability of the maximum process since

$$\max_{j \in \{0, \dots, k\}} |X_j| \le \sum_{\ell=0}^k |X_\ell| \in L^1(\mathbb{P}) \quad \text{for } k = 0, \dots, T.$$
(2)

Thus, by dominated convergence

$$\mathbb{E}\left[X_{k+1} \,\middle|\, \mathscr{F}_k\right] = \lim_{n \to \infty} \mathbb{E}\left[X_{k+1}^{\tau_n} \,\middle|\, \mathscr{F}_k\right] = \lim_{n \to \infty} X_k^{\tau_n} = X_k \quad \mathbb{P}\text{-a.s.}$$
(3)

(b) First, suppose that X is a local martingale. Let $(\tau_n)_{n \in \mathbb{N}}$ be a localising sequence for X. Let ϑ be a predictable process such that $(\vartheta \bullet X)_T^- \in L^1(\mathbb{P})$. For $n \in \mathbb{N}$, define the stopping time

$$\sigma_n := \inf\{k \ge 0 : |\vartheta_{k+1}| \ge n\}.$$

$$\tag{4}$$

Note that this is indeed a stopping time because ϑ is predictable. Then $(\sigma_n)_{n \in \mathbb{N}}$ is increasing to $+\infty$ P-a.s. For $n \in \mathbb{N}$, define the stopping time $\rho_n := \tau_n \wedge \sigma_n$. Then $(\rho_n)_{n \in \mathbb{N}}$ is increasing to $+\infty$ P-a.s. Moreover, for each $n \in \mathbb{N}$, X^{ρ_n} is a martingale and $|\vartheta_k| \mathbb{1}_{\{k \leq \rho_n\}} \leq n$,

 $k \in \{0, \ldots, T\}$. Therefore, for each $n \in \mathbb{N}$, $(\vartheta \bullet X)^{\rho_n}$ is a martingale null at 0. Indeed, for $k \in \{1, \ldots, T\}$,

$$\mathbb{E}[|(\vartheta \bullet X)_{k}^{\rho_{n}}|] = \mathbb{E}\Big[\Big|\sum_{j=1}^{k} \vartheta_{j} \mathbb{1}_{\{j \le \rho_{n}\}} \Delta X_{k}^{\rho_{n}}\Big|\Big] \le n \sum_{j=1}^{k} \mathbb{E}[|\Delta X_{j}^{\rho_{n}}|] < \infty,$$
$$\mathbb{E}[(\vartheta \bullet X)_{k}^{\rho_{n}} - (\vartheta \bullet X)_{k-1}^{\rho_{n}} \mid \mathscr{F}_{k-1}] = \mathbb{E}[\vartheta_{k} \Delta X_{k}^{\rho_{n}} \mid \mathscr{F}_{k-1}]$$
$$= \vartheta_{k} \mathbb{E}[\Delta X_{k}^{\rho_{n}} \mid \mathscr{F}_{k-1}] = 0 \mathbb{P}\text{-a.s.}$$
(5)

Thus $\vartheta \bullet X$ is a local martingale with $(\vartheta \bullet X)_T^- \in L^1(\mathbb{P})$. By part (a) it is even a true martingale and thus $\vartheta \bullet X_T \in L^1(\mathbb{P})$ and $\mathbb{E}[\vartheta \bullet X_T] = 0$.

Conversely, assume the stated condition. Let $(\tau_n)_{n\in\mathbb{N}}$ be a sequence of stopping times, which is \mathbb{P} -a.s. increasing to $+\infty$, such that X^{τ_n} is integrable for all $n \in \mathbb{N}$. We proceed to show that for each $n \in \mathbb{N}$, X^{τ_n} is a martingale, and so X is a local martingale. To this end, let $k \in \{0, \ldots, T-1\}$ and $A \in \mathscr{F}_k$ be arbitrary. Define the process $\vartheta = (\vartheta_j)_{j=0,\ldots,T}$ by

$$\vartheta_j := \begin{cases} \mathbbm{1}_{A \cap \{k+1 \le \tau_n\}}, & \text{if } j = k+1, \\ 0, & \text{else.} \end{cases}$$
(6)

Since τ_n is a stopping time, $A \cap \{k+1 \leq \tau_n\} \in \mathscr{F}_k$, and hence ϑ is predictable. Next, note that

 $\vartheta \bullet X_T = \mathbb{1}_{A \cap \{k+1 \le \tau_n\}} \Delta X_{k+1} = \mathbb{1}_A \Delta X_{k+1}^{\tau_n},$

This implies in particular that $\vartheta \bullet X_T$ is integrable, and hence by assumption,

$$\mathbb{E}[\mathbb{1}_A \Delta X_{k+1}^{\tau_n}] \le 0 \tag{7}$$

The same argument with $-\vartheta$ instead of ϑ , show that

$$\mathbb{E}[-\mathbb{1}_A \Delta X_{k+1}^{\tau_n}] \le 0. \tag{8}$$

and thus we may conclude that $\mathbb{E}[\mathbb{1}_A \Delta X_{k+1}^{\tau_n}] = 0$ Since $A \in \mathscr{F}_k$ was arbitrary, this implies that $\mathbb{E}[\Delta X_{k+1}^{\tau_n} | \mathscr{F}_k] = 0$. Since $k \in \{0, \dots, T-1\}$ was arbitrary, we conclude that X^{τ_n} is a martingale.

Solution 3-2

(a) For $n \in \mathbb{N}$, define the stopping time $\tau_n := \inf\{t > 0 : X_t < 1/n\}$. Then by right-continuity of $X, X_{\tau_n} \leq 1/n$ on $\{\tau_n < \infty\}$ for $n \in \mathbb{N}$. Hence, by the optional stopping theorem, for all $n \in \mathbb{N}$,

$$\mathbb{E}[X_t \mathbb{1}_{\{\tau_n \le t\}}] \le \mathbb{E}[X_{\tau_n} \mathbb{1}_{\{\tau_n \le t\}}] \le 1/n, \quad t \ge 0.$$
(9)

Since $\tau_0 = \lim_{n \to \infty} \tau_n \mathbb{P}$ -a.s., nonnegativity of X and dominated convergence give

$$\mathbb{E}[X_t \mathbb{1}_{\{\tau_0 \le t\}}] = 0, \quad t \ge 0.$$
(10)

This implies that $X_t = 0$ on $\{\tau_0 \leq t\}$ P-a.s. for each $t \geq 0$, and right-continuity of X establishes the claim.

(b) First, note that since X is a strictly positive local martingale, it is a strictly positive supermartingale by Fatou's lemma and hence $X_- > 0$ P-a.s. by part (a). This implies that the process $\frac{1}{X_-}$ is well-defined. Since it is adapted and left-continuous, it is in addition predictable and locally bounded. Hence by the hint, the process $M = (M_t)_{t\geq 0}$ defined by

$$M_t := \int_0^t \frac{1}{X_{s-}} \, \mathrm{d}X_s, \quad t \ge 0,$$
(11)

is well defined and a local martingale. Moreover, associativity of the stochastic integral gives

$$\int_0^t X_{s-} \, \mathrm{d}M_s = \int_0^t \frac{X_{s-}}{X_{s-}} \, \mathrm{d}X_s = X_t - X_0 = X_t - 1, \quad t \ge 0.$$
(12)

This shows existence of M.

To establish uniqueness, suppose that \widetilde{M} is a local martingale null at 0 such that $X = \mathcal{E}(\widetilde{M})$. Then associativity of the stochastic integral together with the definition of the stochastic exponential give

$$\widetilde{M}_{t} = \int_{0}^{t} \frac{1}{X_{s-}} X_{s-} \, \mathrm{d}M_{s} = \int_{0}^{t} \frac{1}{X_{s-}} \, \mathrm{d}X_{s} = M_{t}, \quad t \ge 0.$$
(13)

Solution 3-3

(a) Recall that we can write $N = N^c + N^d + N^{FV}$, where $N^c \in \mathcal{H}^{2,c}_{0,\text{loc}}$, $N^d \in \mathcal{H}^{2,d}_{0,\text{loc}}$ and N^{FV} is a local martingale of finite variation and null at 0. (More precisely, as N is a semimartingale we can write $N = N^1 + N^2$, where $N^1 \in \mathcal{H}^2_{0,\text{loc}}$ and N^2 is adapted, of finite variation and null at 0. Since both N and N^1 are local martingales, the same is true for $N^{FV} := N^2$. Decomposing $N^1 = N^c + N^d$, where $N^c \in \mathcal{H}^{2,c}_{0,\text{loc}}$, $N^d \in \mathcal{H}^{2,d}_{0,\text{loc}}$, establishes the claim.)

Note that since $M \in \mathcal{H}^{2,c}_{0,\text{loc}}$ and $(N^{FV})^c = 0$,

$$[M, N^d] \equiv 0 \quad \text{and} \quad [M, N^{FV}] = \sum \Delta M \Delta N^{FV} \equiv 0.$$
 (14)

Now applying the usual Kunita-Watanabe decomposition to N^c , we get $H \in L^2_{loc}(M)$ and $L^c \in \mathcal{H}^{2,c}_{0,loc}$ such that $N^c = H \bullet M + L^c$ and $[M, L^c] = \langle M, L^c \rangle \equiv 0$. Now set $L := L^c + N^d + N^{FV}$. Then L is a local martingale, $N = H \bullet M + L$ and

$$[M, L] = [M, L^{c}] + [M, N^{d}] + [M, N^{FV}] \equiv 0.$$
(15)

(b) First, assume that S satisfies SC, and let $H \in L^2_{loc}(M)$ be such that $A = \int H d\langle M \rangle$. Then $-H \bullet M$ is a continuous local martingale null at 0. Set $Z := \mathcal{E}(-H \bullet M)$. Then Z is a strictly positive continuous local martingale with $Z_0 = 1$. We show that Z is an equivalent local martingale deflator. By the product rule and the structure condition,

$$d(Z_t S_t) = S_t dZ_t + Z_t dS_t + d\langle Z, S \rangle_t$$

= $S_t dZ_t + Z_t dM_t + Z_t dA_t - Z_t H_t d\langle M, M \rangle_t$
= $S_t dZ_t + Z_t dM_t.$ (16)

Since Z_t and M are continuous local martingales, $\int S \, dZ$ and $\int Z \, dM$ are so, too, and this establishes the claim. Conversely, assume that there exists an equivalent local martingale deflator Z for S. The by Exercise 3-2 (b), we can write $Z = \mathcal{E}(N)$, where $N = (N_t)_{t\geq 0}$ is a local martingale null at 0. By part (a), we may write – using a change of sign for convenience – $N = -H \bullet M + L$, where $H \in L^2_{loc}(M)$ and $L = (L_t)_{t\geq 0}$ is a local martingale null at 0 and such that $[M, L] \equiv 0$. Then by the product rule and using that $[M, L] \equiv 0$,

$$d(Z_t S_t) = S_{t-} dZ_t + Z_{t-} dS_t + d[Z, S]_t$$

= $S_{t-} dZ_t + Z_{t-} dM_t + Z_{t-} dA_t - Z_{t-} H_t d[M, M]_t + Z_{t-} d[M, L]_t$
= $S_{t-} dZ_t + Z_{t-} dM_t + Z_{t-} dA_t - Z_{t-} H_t d\langle M, M \rangle_t.$ (17)

Since ZS is a local martingale by hypothesis and $\int S_- dZ$ and $\int Z_- dM$ are local martingales as integrals of a locally bounded process against a local martingale, it follows that $\int Z_- dA - \int Z_- H d\langle M, M \rangle$ is a local martingale, too. As it is continuous, of finite variation and null at 0, it is 0 identically. Since $1/Z_-$ is predictable and locally bounded, associativity of the stochastic integral gives

$$A_{t} = \int_{0}^{t} \frac{1}{Z_{s-}} Z_{s-} \, \mathrm{d}A_{s} = \int_{0}^{t} \frac{1}{Z_{s-}} Z_{s-} H_{s} \, \mathrm{d}\langle M, M \rangle_{s} = \int_{0}^{t} H_{s} \, \mathrm{d}\langle M, M \rangle_{s}.$$
(18)

This shows that S satisfies SC.

Solution 3-4

(a) Define the process $R = (R_t)_{t \in [0,T]}$ by

$$R_t := \mu t + \frac{\sigma}{\sqrt{\lambda}} \widetilde{N}_t = \mu t + \frac{\sigma}{\sqrt{\lambda}} (N_t - \lambda t) = (\mu - \sigma \sqrt{\lambda})t + \frac{\sigma}{\sqrt{\lambda}} N_t$$
$$= \frac{\sigma}{\sqrt{\lambda}} (N_t - \ell t), \quad t \in [0, T], \tag{19}$$

where $\ell := \lambda - \frac{\mu}{\sigma}\sqrt{\lambda}$. It follows from Exercise 1-5 (b) that *S* fails NA, and a fortiori NFLVR, if the paths of *R* are monotone, i.e., if $\ell \leq 0$. On the other hand, if $\ell > 0$, define the measure $\mathbb{Q}^{\lambda} \approx \mathbb{P}$ on \mathscr{F}_{T} by

$$\frac{\mathrm{d}\mathbb{Q}^{\lambda}}{\mathrm{d}\mathbb{P}} = \exp\left(\sum_{k=1}^{N_T} \log\frac{\ell}{\lambda} + (\lambda - \ell)T\right).$$
(20)

Then it follows from Exercise 1-4 that under \mathbb{Q}^{λ} , $R = \frac{\sigma}{\sqrt{\lambda}} \widetilde{N}^{\mathbb{Q}^{\lambda}}$, where $N^{\mathbb{Q}^{\lambda}} := N$ is a Poisson process with rate ℓ . Since R is a \mathbb{Q}^{λ} -martingale, it follows from Exercise 1-5 (a) that S is so, too.

(b) Since S admits a unique equivalent martingale measure \mathbb{Q}^{λ} , the arbitrage-free price of $\mathbb{1}_{\{S_T > K\}}$ is given by

$$\mathbb{E}_{\mathbb{Q}^{\lambda}}[\mathbb{1}_{\{S_{T}>K\}}] = \mathbb{Q}^{\lambda}[S_{T}>K]$$

$$= \mathbb{Q}^{\lambda}\left[S_{0}\exp\left(\log\left(1+\frac{\sigma}{\sqrt{\lambda}}\right)N_{T}^{\mathbb{Q}^{\lambda}}-\frac{\sigma\ell}{\sqrt{\lambda}}T\right)>K\right]$$

$$= \mathbb{Q}^{\lambda}\left[N_{T}^{\mathbb{Q}^{\lambda}}>\frac{\log\frac{K}{S_{0}}+\frac{\sigma\ell}{\sqrt{\lambda}}T}{\log\left(1+\frac{\sigma}{\sqrt{\lambda}}\right)}\right]$$

$$= \overline{\Psi}_{\left(\lambda-\frac{\mu}{\sigma}\sqrt{\lambda}\right)T}\left(\frac{\log\frac{K}{S_{0}}+\left(\sigma\sqrt{\lambda}-\mu\right)T}{\log\left(1+\frac{\sigma}{\sqrt{\lambda}}\right)}\right).$$
(21)

(c) First, define $\widetilde{\mathbb{Q}}^{\lambda} \approx \mathbb{Q}^{\lambda}$ on \mathscr{F}_T by $\frac{\mathrm{d}\widetilde{\mathbb{Q}}^{\lambda}}{\mathrm{d}\mathbb{Q}^{\lambda}} := S_T/S_0$. Note that

$$S_T/S_0 = \mathcal{E}(R)_T = \exp\left(\sum_{k=1}^{N_T^{Q^\lambda}} \log \frac{\widetilde{\ell}}{\ell} + (\ell - \widetilde{\ell})T\right),$$
(22)

where $\tilde{\ell} := \left(1 + \frac{\sigma}{\sqrt{\lambda}}\right) \ell$. Now it follows from Exercise 1-4 that under $\tilde{\mathbb{Q}}^{\lambda}$,

$$R_t = \frac{\sigma}{\sqrt{\lambda}} N_t^{\widetilde{\mathbb{Q}}^{\lambda}} - \frac{\sigma}{\sqrt{\lambda}} \ell t, \quad t \in [0, T],$$
(23)

where $N^{\widetilde{\mathbb{Q}}^{\lambda}}$ is a Poisson process with rate $\widetilde{\ell}$.

Next, since S admits a unique equivalent martingale measure \mathbb{Q}^{λ} , the arbitrage-free price of $S_T \mathbb{1}_{\{S_T > K\}}$ is given by $\mathbb{E}_{\mathbb{Q}^{\lambda}}[S_T \mathbb{1}_{\{S_T > K\}}]$. By Bayes' formula and the above and noting that under $\widetilde{\mathbb{Q}}^{\lambda}$, the calculation is exactly the same as in part (b),

$$\mathbb{E}_{\mathbb{Q}^{\lambda}}[S_{T}\mathbb{1}_{\{S_{T}>K\}}] = \mathbb{E}_{\widetilde{\mathbb{Q}}^{\lambda}}[S_{0}\mathbb{1}_{\{S_{T}>K\}}] = S_{0}\widetilde{\mathbb{Q}}^{\lambda}[S_{T}>K]$$
$$= S_{0}\overline{\Psi}_{\left(1+\frac{\sigma}{\sqrt{\lambda}}\right)\left(\lambda-\frac{\mu}{\sigma}\sqrt{\lambda}\right)T}\left(\frac{\log\frac{K}{S_{0}}+\left(\sigma\sqrt{\lambda}-\mu\right)T}{\log\left(1+\frac{\sigma}{\sqrt{\lambda}}\right)}\right).$$
(24)

(d) First, it follows immediately from parts (b) and (c) that

$$C_{0}^{\lambda} = \mathbb{E}_{\mathbb{Q}^{\lambda}}[(S_{T} - K)^{+}] = \mathbb{E}_{\mathbb{Q}^{\lambda}}[S_{T}\mathbb{1}_{\{S_{T} > K\}}] - K\mathbb{E}_{\mathbb{Q}^{\lambda}}[\mathbb{1}_{\{S_{T} > K\}}]$$
$$= S_{0}\overline{\Psi}_{\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right)}\left(\lambda - \frac{\mu}{\sigma}\sqrt{\lambda}\right)T\left(\frac{\log\frac{K}{S_{0}} + \left(\sigma\sqrt{\lambda} - \mu\right)T}{\log\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right)}\right)$$
$$- K\overline{\Psi}_{\left(\lambda - \frac{\mu}{\sigma}\sqrt{\lambda}\right)T}\left(\frac{\log\frac{K}{S_{0}} + \left(\sigma\sqrt{\lambda} - \mu\right)T}{\log\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right)}\right).$$
(25)

Next, for $\rho > 0$, let F_{ρ} be the distribution function of $\frac{X_{\rho}-\rho}{\sqrt{\rho}}$, where X_{ρ} is Poisson distributed with parameter ρ . Moreover, set $\overline{F}_{\rho} := 1 - F_{\rho}$ and $\overline{\Phi} = 1 - \Phi$. Then by the hint, F_{ρ} converges pointwise to Φ as $\rho \to \infty$, and the convergence is even uniform as Φ is continuous. Thus \overline{F}_{ρ} converges uniformly to $\overline{\Phi}$ as $\rho \to \infty$. Now the claim follows from the fact that $\overline{\Psi}_{\rho}(x) = \overline{F}_{\rho}\left(\frac{x-\rho}{\sqrt{\rho}}\right)$, the fact that $\overline{\Phi}(x) = \Phi(-x)$ and the limits

$$\lim_{\lambda \to \infty} \log\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right) \sqrt{\left(\lambda - \frac{\mu}{\sigma}\sqrt{\lambda}\right)T} = \sigma\sqrt{T},$$

$$\lim_{\lambda \to \infty} \log\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right) \sqrt{\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right)\left(\lambda - \frac{\mu}{\sigma}\sqrt{\lambda}\right)T} = \sigma\sqrt{T},$$

$$\lim_{\lambda \to \infty} \left(\left(\sigma\sqrt{\lambda} - \mu\right)T - \log\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right)\left(\lambda - \frac{\mu}{\sigma}\sqrt{\lambda}\right)T\right) = \frac{\sigma^2}{2}T,$$

$$\lim_{\lambda \to \infty} \left(\left(\sigma\sqrt{\lambda} - \mu\right)T - \log\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right)\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right)\left(\lambda - \frac{\mu}{\sigma}\sqrt{\lambda}\right)T\right) = -\frac{\sigma^2}{2}T,$$
(26)

where we have used that

$$\log\left(1+\frac{\sigma}{\sqrt{\lambda}}\right) = \frac{\sigma}{\sqrt{\lambda}} - \frac{\sigma^2}{2\lambda} + O\left(\frac{1}{\lambda^{3/2}}\right),$$
$$\sqrt{\lambda - \frac{\mu}{\sigma}\sqrt{\lambda}} = \sqrt{\lambda}\sqrt{1 + O\left(\frac{1}{\sqrt{\lambda}}\right)},$$
$$\sqrt{\left(1+\frac{\sigma}{\sqrt{\lambda}}\right)\left(\lambda - \frac{\mu}{\sigma}\sqrt{\lambda}\right)} = \sqrt{\lambda}\sqrt{1 + O\left(\frac{1}{\sqrt{\lambda}}\right)}.$$
(27)

Remark: More generally, one can show that if N^{λ} is a Poisson process with rate λ , then the normalised compensated Poisson process $\frac{\tilde{N}^{\lambda}}{\sqrt{\lambda}}$ converges weakly to a standard Brownian motion. But this is of course much more difficult.

Solution 3-5

(a) The idea is to change the jump intensity of N to ℓ using Exercise 1-4 and then the drift of R to $-a\ell$ using Girsanov's theorem. To this end, note that

$$R_t = a(N_t - \ell t) + \sigma \left(W_t + \frac{\mu + a\ell}{\sigma} t \right).$$
(28)

Define the measure $\mathbb{P}^{\ell} \approx \mathbb{P}$ on \mathscr{F}_T by

$$\frac{\mathrm{d}\mathbb{P}^{\ell}}{\mathrm{d}\mathbb{P}} := \exp\left(\sum_{k=1}^{N_T} \log\frac{\ell}{\lambda} + (\lambda - \ell)T\right).$$
(29)

Then by Exercise 1-4, $N^{\mathbb{P}^{\ell}} := N$ is a Poisson process with rate ℓ under \mathbb{P}^{ℓ} . Moreover, as $\frac{\mathrm{d}\mathbb{P}^{\ell}}{\mathrm{d}\mathbb{P}}$ is a functional of N and N and W are independent under \mathbb{P} , it follows that W is a Brownian motion and independent from $N^{\mathbb{P}^{\ell}}$ under \mathbb{P}^{ℓ} , too. Next, define the measure $\mathbb{Q}^{\ell} \approx \mathbb{P}^{\ell} \approx \mathbb{P}$ on \mathscr{F}_T by

$$\frac{\mathrm{d}\mathbb{Q}^{\ell}}{\mathbb{P}^{\ell}} := \mathcal{E}\left(-\frac{\mu + a\ell}{\sigma}W\right)_{T}.$$
(30)

Then by Girsanov's theorem, $W_t^{\mathbb{Q}^{\ell}} := W_t + \frac{\mu + a\ell}{\sigma} t$ is a Brownian motion under \mathbb{Q}^{ℓ} . Moreover, as $\frac{d\mathbb{Q}^{\ell}}{d\mathbb{P}^{\ell}}$ is a functional of W, and $N^{\mathbb{P}^{\ell}}$ and W are independent under \mathbb{P}^{ℓ} , it follows that $W^{\mathbb{Q}^{\ell}}$ is a Brownian motion and independent from $N^{\mathbb{Q}^{\ell}} := N^{\mathbb{P}^{\ell}}$ under \mathbb{Q}^{ℓ} , too.

(b) It suffices to show that

$$\limsup_{\ell \to \infty} \mathbb{E}_{\mathbb{Q}^{\ell}}[\mathbb{1}_{\{S_T > K\}}] = 0.$$
(31)

First, fix $\ell > 0$. Then by Exercise 1-4 and independence of $W^{\mathbb{Q}^{\ell}}$ and $N^{\mathbb{Q}^{\ell}}$,

$$\begin{split} & \mathbb{E}_{\mathbb{Q}^{\ell}}[\mathbb{1}_{\{S_{T}>K\}}] \\ &= \mathbb{Q}^{\ell} \left[\exp\left(\sigma W_{T}^{\mathbb{Q}^{\ell}} - \frac{\sigma^{2}}{2}T + \log(1+a)N_{T}^{\mathbb{Q}^{\ell}} - a\ell T\right) > \frac{K}{S_{0}} \right] \\ &= \mathbb{Q}^{\ell} \left[N_{T}^{\mathbb{Q}^{\ell}} - \ell T > \frac{\log\frac{K}{S_{0}} - \sigma W_{T}^{\mathbb{Q}^{\ell}} + \frac{\sigma^{2}}{2}T + (a - \log(1+a))\ell T}{\log(1+a)} \right] \\ &\leq \mathbb{E}_{\mathbb{Q}^{\ell}} \left[\mathbb{Q}^{\ell} \left[|N_{T}^{\mathbb{Q}^{\ell}} - \ell T| > \frac{\log\frac{K}{S_{0}} - \sigma w + \frac{\sigma^{2}}{2}T + (a - \log(1+a))\ell T}{\log(1+a)} \right] \Big|_{w=W_{T}^{\mathbb{Q}^{\ell}}} \right] \\ &= \int_{\mathbb{R}} \mathbb{Q}^{\ell} \left[|N_{T}^{\mathbb{Q}^{\ell}} - \ell T| > \frac{\log\frac{K}{S_{0}} - \sigma w + \frac{\sigma^{2}}{2}T + (a - \log(1+a))\ell T}{\log(1+a)} \right] \frac{\exp(-\frac{w^{2}}{2T})}{\sqrt{2T\pi}} \, \mathrm{d}w. \end{split}$$
(32)

Now, for fixed $w \in \mathbb{R}$, $\log \frac{K}{S_0} - \sigma w + \frac{\sigma^2}{2}T + (a - \log(1 + a))\ell T > 0$ for all ℓ sufficiently large (since $a - \log(1 + a) > 0$), and so by Chebychev's inequality,

$$\limsup_{\ell \to \infty} \mathbb{Q}^{\ell} \left[|N_T^{\mathbb{Q}^{\ell}} - \ell T| \ge \frac{\log \frac{K}{S_0} - \sigma w + \frac{\sigma^2}{2}T + (a - \log(1+a))\ell T}{\log(1+a)} \right]$$
(33)

$$\leq \limsup_{\ell \to \infty} \frac{\ell T \log(1+a)^2}{(\log \frac{K}{S_0} - \sigma w + \frac{\sigma^2}{2}T + (a - \log(1+a))\ell T)^2} = 0.$$
(34)

This together with the above and dominated convergence establishes the claim.

(c) First, note that $S/S_0 = \mathcal{E}(R)$ is a true nonnegative martingale with mean 1 by Exercise 1-5 (a). So for $\ell > 0$ define $\widetilde{\mathbb{Q}}^{\ell} \approx \mathbb{Q}^{\ell}$ on \mathscr{F}_T by $\frac{\mathrm{d}\widetilde{\mathbb{Q}}^{\ell}}{\mathrm{d}\mathbb{Q}^{\ell}} := S_T/S_0$. Note that

$$S_T/S_0 = \mathcal{E}(R)_T = \mathcal{E}(\sigma W^{\mathbb{Q}^\ell})_T \exp\left(\sum_{k=1}^{N_T^{\mathbb{Q}^\ell}} \log \frac{\widetilde{\ell}}{\ell} + (\ell - \widetilde{\ell})T\right),\tag{35}$$

where $\tilde{\ell} := (1+a)\ell$. Now it follows as in part (a) that

$$R_t = \sigma W_t^{\mathbb{Q}^\ell} + a N_t^{\mathbb{Q}^\ell} - a\ell t = \sigma (W_t^{\widetilde{\mathbb{Q}}^\ell} + \sigma t) + a N_t^{\widetilde{\mathbb{Q}}^\ell} - a\ell t, \quad t \in [0, T],$$
(36)

where $W^{\widetilde{\mathbb{Q}}^{\ell}}$ is a $\widetilde{\mathbb{Q}}^{\ell}$ -Brownian motion and $N^{\widetilde{\mathbb{Q}}^{\ell}} := N^{\mathbb{Q}^{\ell}}$ is a $\widetilde{\mathbb{Q}}^{\ell}$ -Poisson process with rate $\widetilde{\ell} = (1+a)\ell$ and $W^{\widetilde{\mathbb{Q}}^{\ell}}$ and $N^{\widetilde{\mathbb{Q}}^{\ell}}$ are independent under $\widetilde{\mathbb{Q}}^{\ell}$.

So, for fixed $\ell > 0$, by Bayes' formula and independence of $W^{\widetilde{\mathbb{Q}}^{\ell}}$ and $N^{\widetilde{\mathbb{Q}}^{\ell}}$ under $\widetilde{\mathbb{Q}}^{\ell}$,

$$\begin{split} & \mathbb{E}_{\mathbb{Q}^{\ell}}[S_{T}\mathbb{1}_{\{S_{T} \leq K\}}] = \mathbb{E}_{\widetilde{\mathbb{Q}}^{\ell}}[S_{0}\mathbb{1}_{\{S_{T} \leq K\}}] \\ &= S_{0}\widetilde{\mathbb{Q}}^{\ell} \left[\exp\left(\sigma W_{T}^{\widetilde{\mathbb{Q}}^{\ell}} + \frac{\sigma^{2}}{2}T + \log(1+a)N_{T}^{\widetilde{\mathbb{Q}}^{\ell}} - a\ell T\right) \leq \frac{K}{S_{0}} \right] \\ &= S_{0}\widetilde{\mathbb{Q}}^{\ell} \left[N_{T}^{\widetilde{\mathbb{Q}}^{\ell}} - \widetilde{\ell}T \leq \frac{\log\frac{K}{S_{0}} - \sigma W_{T}^{\widetilde{\mathbb{Q}}^{\ell}} - \frac{\sigma^{2}}{2}T - (\log(1+a)(1+a) - a)\ell T}{\log(1+a)} \right] \\ &\leq S_{0}\mathbb{Q}^{\ell} \left[\mathbb{Q}^{\ell} \left[|N_{T}^{\widetilde{\mathbb{Q}}^{\ell}} - \widetilde{\ell}T| \geq \frac{-\log\frac{K}{S_{0}} + \sigma w + \frac{\sigma^{2}}{2}T + (\log(1+a)(1+a) - a)\ell T}{\log(1+a)} \right] \Big|_{w = W_{T}^{\widetilde{\mathbb{Q}}^{\ell}}} \right] \\ &= S_{0}\int_{R}\mathbb{Q}^{\ell} \left[|N_{T}^{\widetilde{\mathbb{Q}}^{\ell}} - \widetilde{\ell}T| \geq \frac{-\log\frac{K}{S_{0}} + \sigma w + \frac{\sigma^{2}}{2}T + (\log(1+a)(1+a) - a)\ell T}{\log(1+a)} \right] \frac{\exp(-\frac{w^{2}}{2T})}{\sqrt{2T\pi}} \, \mathrm{d}w. \tag{37}$$

Now, for fixed $w \in \mathbb{R}$, $-\log \frac{K}{S_0} + \sigma w + \frac{\sigma^2}{2}T + (\log(1+a)(1+a) - a)\ell T > 0$ for all ℓ sufficiently large (since $\log(1+a)(1+a) - a > 0$), and the claim follows by Chebychev's inequality and dominated convergence as in part (b).

(d) Since $S_0 + 1 \bullet S_T = S_T \ge (S_T - K)^+ \mathbb{P}$ -a.s. and $K + 0 \bullet S_T = K \ge (K - S_T)^+$, it follows that $\Pi_s((S_T - K)^+) \le S_0$ and $\Pi_s((K - S_T)^+) \le K$. On the other hand, by Theorem 4.4 in the lecture notes and parts (b) and (c),

$$\Pi_{s}((S_{T}-K)^{+}) \geq \lim_{\ell \to \infty} \mathbb{E}_{\mathbb{Q}^{\ell}}[(S_{T}-K)^{+}]$$

$$= \lim_{\ell \to \infty} \mathbb{E}_{\mathbb{Q}^{\ell}}[S_{T}\mathbb{1}_{\{S_{T}>K\}}] - K \lim_{\ell \to \infty} \mathbb{E}_{\mathbb{Q}^{\ell}}[\mathbb{1}_{\{S_{T}>K\}}]$$

$$= S_{0} - \lim_{\ell \to \infty} \mathbb{E}_{\mathbb{Q}^{\ell}}[S_{T}\mathbb{1}_{\{S_{T}\leq K\}}] - 0 = S_{0},$$

$$\Pi_{s}((K-S_{T})^{+}) \geq \lim_{\ell \to \infty} \mathbb{E}_{\mathbb{Q}^{\ell}}[(K-S_{T})^{+}]$$

$$= K \lim_{\ell \to \infty} \mathbb{E}_{\mathbb{Q}^{\ell}}[\mathbb{1}_{\{S_{T}\leq K\}}] - \lim_{\ell \to \infty} \mathbb{E}_{\mathbb{Q}^{\ell}}[S_{T}\mathbb{1}_{\{S_{T}\leq K\}}]$$

$$= K - K \lim_{\ell \to \infty} \mathbb{E}_{\mathbb{Q}^{\ell}}[\mathbb{1}_{\{S_{T}>K\}}] - 0 = K.$$
(38)

Thus, $\Pi_s((S_T - K)^+) = S_0$ and $\Pi_s((K - S_T)^+) = K$, i.e., the superreplication strategy is the trivial buy-and-hold superhedge.