Topics in Discrete Mathematics

Instructor: Benny Sudakov

Practice Problems

Solution of every problem should be no longer than one page!

Problem 1: Show that if G is a graph with even degrees, the edges of G can be oriented in such a way that every vertex in the resulting orientation has the same in-degree as out-degree.

Problem 2: Let a_1, a_2, \ldots, a_n be n not necessarily distinct integers. Show there is a set of consecutive numbers $a_k, a_{k+1}, \ldots, a_\ell$ whose sum $\sum_{i=k}^\ell a_i$ is divisible by n.

Problem 3: Prove that for every $k \geq 2$ there exists an $n_0 = n_0(k)$ such that every colouring of $1, 2, \ldots, n_0$ in k colours contains three distinct numbers $1 \leq a, b, c \leq n_0$ satisfying $a \cdot b = c$ that have the same colour.

Problem 4: Prove that for every positive integer r there exists $N(r)$ such that for all $n \geq N(r)$, any colouring of all subsets of $[n]$ into r colours contains two non-empty disjoint sets X and Y such that X, Y and $X \cup Y$ have the same colour.

Problem 5: A transitive tournament is an orientation of a complete graph for which the vertices can be numbered in such a way that (i,j) is a directed edge if and only if $i < j$.

(i) Show that every orientation of the complete graph K_n contains a transitive tournament on $\lceil \log_2 n \rceil$ vertices.

(ii) Show that if $k \geq 2 \log_2 n + 2$ there is an orientation of K_n with no transitive tournament on k vertices.

Problem 6: Let $g_1(x), \ldots, g_k(x)$ be bounded real functions and let $f(x)$ be another real function. Suppose there are positive constants ε and δ such that if $f(x) - f(y) > \varepsilon$, then $\max_i (g_i(x) - g_i(y)) > \delta$. Prove that f is also bounded.

Problem 7: Prove that every set of $2^m + 1$ vectors in \mathbb{R}^m with integer coordinates contains a pair of vectors whose average also has integer coordinates.
Problem 8: Let G be a graph with n vertices and m edges. Show that G has at least
\[
\frac{4m}{3n} \left(m - \frac{n^2}{4} \right)
\]
triangles. Moreover, show this estimate is tight (best possible) when $m = n^2/3$.

Problem 9: Let G be a graph on n vertices and let \overline{G} be its complement. Let $t(G)$ denote the total number of triangles in G and \overline{G}. Express $t(G)$ as a function of the degrees d_1, \ldots, d_n of the vertices of G and prove that
\[
t(G) \geq \frac{n(n-1)(n-5)}{24}.
\]

Problem 10: Suppose $r \geq 3$, $n \geq r + 1$, and let $\text{ex}(n, K_r)$ denote the maximum number of edges in a graph on n vertices that does not contain K_r as a subgraph. Show that any graph G on n vertices with at least
\[
\text{ex}(n, K_r) + 1
\]
edges must contain $K_{r+1} - e$; i.e., a copy of a clique of size $r + 1$ with one missing edge.

Problem 11: Let H be an r-uniform (edge edge has size r) hypergraph on n vertices with $m = cn^{r-1}/e^{r-1}$ edges. Show that for a sufficiently large constant c, H contains a collection of r disjoint sets U_1, \ldots, U_r such that $|U_i| = t$ for all i and all r-tuples intersecting each U_i in one vertex are edges of H. (That is, H contains a complete r-partite subhypergraph with parts of size t.)

Problem 12: Let X be a set of n points in the plane. Prove that the number of pairs $x_i, x_j \in X$ such that the distance between x_i and x_j equals 1 is at most $cn^{3/2}$ for some absolute constant c.

Problem 13: Let D be a directed graph on n vertices such that the outdegree of every vertex is larger than $\log_2 n$. Prove that D contains an even directed cycle.

[Hint: Show that the vertices of D can be partitioned into two parts such that every vertex from one part has an out-neighbour in the other.]

Problem 14: Let \mathcal{F} be a collection of subsets of X such that every two members of \mathcal{F} intersect in at least two points. Prove that the vertices of X can be 2-coloured so that no set in \mathcal{F} is monochromatic.
Problem 15: Let $k \geq 4$ and let \mathcal{F} be a collection of k-element subsets of X. Prove that if \mathcal{F} has fewer than $\frac{4^{k-1}}{3^k}$ sets then the vertices of X can be 4-coloured so that every set in \mathcal{F} is rainbow; i.e., contains vertices of all 4 colours.

Problem 16: Let G be a graph with average degree at least $2d$. Prove that G contains a non-empty subgraph G' with minimum degree at least d. Using this, show that if G has n vertices and kn edges, then it contains every tree on k vertices as a subgraph (a tree is a connected graph with no cycles).

Problem 17: Given a tournament T, a Hamiltonian path is a directed path that visits every vertex of T exactly once.

(i) Prove that every tournament contains a Hamiltonian path.

(ii) Prove there exists a tournament T on n vertices which contains at least $n!2^{-(n-1)}$ distinct Hamiltonian paths.

Problem 18: Let v_1, \ldots, v_n be vectors in \mathbb{R}^n of unit length $|v_i| = 1$. Prove there are signs $\varepsilon_i = \pm 1$ such that

$$|\varepsilon_1 v_1 + \ldots + \varepsilon_n v_n| \leq \sqrt{n}.$$

Show that this is tight; i.e., the \sqrt{n} estimate cannot be improved.

Problem 19: Given a hypergraph H, the transversal number $\tau(H)$ is the minimal cardinality of a set of vertices which intersects all edges of H. Prove that if H has n vertices and m edges all of size r, then for any $p \in [0, 1]$,

$$\tau(H) \leq pn + (1-p)^r m.$$

Deduce from this that

$$\tau(H) \leq \frac{m + n \log r}{r},$$

where \log is the natural log to the base e.

Problem 20: Let $\{(A_i, B_i) : 1 \leq i \leq h\}$ be a family of pairs of subsets of the set of integers such that $|A_i| = k$ and $|B_i| = \ell$ for all i, $A_i \cap B_i = \emptyset$ and $(A_i \cap B_j) \cup (A_j \cap B_i) \neq \emptyset$ for all $i \neq j$. Prove that $h \leq \frac{(k+\ell)^{k+\ell}}{k^k \ell^\ell}$.

3
Problem 21: A sunflower with \(k \) petals and core \(Y \) is a collection of sets \(S_1, \ldots, S_k \) such that \(S_i \cap S_j = Y \) for all \(i \neq j \) and the sets \(S_i - Y \) are all non-empty. Let \(\mathcal{F} \) be a family of sets each of cardinality \(s \). Prove that if \(|\mathcal{F}| > s!(k-1)^s \) then \(\mathcal{F} \) contains a sunflower with \(k \) petals.

Problem 22: Let \(G_1 \) and \(G_2 \) be two graphs on the same vertex set \(V \). Prove that the chromatic number of the union \(G_1 \cup G_2 \) (we take the union of the edge sets of both graphs) satisfies
\[
\chi(G_1 \cup G_2) \leq \chi(G_1) \cdot \chi(G_2).
\]
Use this to show that if \(H_1, \ldots, H_t \) are bipartite graphs whose union is a complete graph on \(n \) vertices, then \(t \geq \log_2 n \).

Problem 23: Let \(A_1, \ldots, A_m \) be subsets of an \(n \)-element set. Assume that their pairwise symmetric differences \(A_i \Delta A_j = (A_i - A_j) \cup (A_j - A_i) \) have only two sizes. Prove that \(m \leq \frac{n(n+1)}{2} + 1 \). Find \(m = \frac{n(n-1)}{2} + 1 \) subsets of an \(n \)-element set with only two sizes of symmetric differences.

Problem 24: Let \(\mathcal{A} \) and \(\mathcal{B} \) be families of subsets of an \(n \)-element set with the property that \(|A \cap B| \) is odd for all \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \). Prove that \(|\mathcal{A}| |\mathcal{B}| \leq 2^{n-1} \).

Problem 25: Let \(\lambda_1 \) be the maximum eigenvalue of a graph \(G \). Prove that the chromatic number of \(G \) is at most \(\lambda_1 + 1 \).

Problem 26: Suppose that a connected graph \(G \) has only two distinct eigenvalues. Prove that \(G \) is the complete graph.

[Hint (to be read backwards): ?hparg eht fo retemaid eht tuoba yas uoy nac tahW]

Problem 27: Let \(G \) be a graph on \(n \) vertices with \(m \) edges. Let \(L(G) \) be the line graph of \(G \).

(i) Show that all eigenvalues of \(L(G) \) satisfy \(\lambda_i \geq -2 \).

(ii) Show that if \(m > n \), then the smallest eigenvalue satisfies \(\lambda_m = -2 \).