Probability Theory

Quiz 1

Question 1

State the Strong Law of Large Numbers.

Question 2

Compute the characteristic function ϕ_{X} of a random variable X with $\operatorname{Binomial}(n, p)(p \in[0,1]$ and $n \in \mathbb{Z}_{>0}$ fixed) distribution.

Question 3

Consider a sequence $\lambda_{n}>0$ such that $\lambda_{n} \underset{n \rightarrow \infty}{\rightarrow} \infty$, and r.v. $\left(X_{n}\right)_{n \in \mathbb{N}}$, where X_{n} has exponential distribution with parameter λ_{n} : does the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ converge in distribution? If so, what is the limit?

Question 4

Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be a sequence of i.i.d. random variables. What can you say about the σ-algebras $\sigma\left(X_{i}: i=2 n\right.$ with $\left.n \in \mathbb{N}\right)$ and $\sigma\left(X_{i}: i=2 n+1\right.$ with $\left.n \in \mathbb{N}\right)$?

