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Solution 1

1. Determine whether each of the following statements are true for all x1, . . . , xn, y1, . . . , yn ∈ R and
a, b ∈ R.

√
(a)

∑n
i=1(xi + yi) =

∑n
i=1 xi +

∑n
i=1 yi

(x1 + y1) + . . .+ (xn + yn) = x1 + . . .+ xn + y1 + . . .+ yn ⇒ Statement holds.

√
(b)

∑n
i=1 xi =

∑n
k=1 xk =

∑n
k=1 xn+1−k

n∑
i=1

xi = x1 + x2 + . . .+ xn

=
n∑

k=1

xk = x1 + x2 + . . .+ xn

=
n∑

k=1

xn+1−k = xn + . . .+ x2 + x1

⇒ Statement holds.

(c)
∑n

i=1(axi + b) = a
(∑n

i=1 xi
)
+ b

(ax1 + b) + . . .+ (axn + b) 6= a(x1 + . . .+ xn) + b⇒ Statement does not hold.

(d)
∑n

i=1(xi · yi) =
(∑n

i=1 xi
)
·
(∑n

i=1 yi
)

(x1y1) + . . .+ (xnyn) 6= (x1 + . . .+ xn)(y1 + . . .+ yn)⇒ Statement does not hold.

√
(e)

∑n
i=1(xi −

1
n

∑n
j=1 xj) = 0

(x1 − 1
n
c) + . . .+ (xn − 1

n
c) = (x1 + . . .+ xn)− c, c = x1 + . . .+ xn ⇒ Statement holds.

√
(f)

∑n
i=1

∑n
j=1 xi · yj =

(∑n
i=1 xi

)
·
(∑n

j=1 yj
)

x1y1 + x1y2 + . . .+ x1yn+

x2y1 + x2y2 + . . .+ x2yn+

. . .

xny1 + xny2 + . . .+ xnyn+

= (x1 + . . .+ xn)(y1 + . . .+ yn)

⇒ Statement holds.

(g) (a− 1)
(∑n

i=0 a
i
)
= an − 1

Bitte wenden!



(a− 1)

(
n∑

i=0

ai

)
=

n∑
i=0

ai+1 −
n∑

i=0

ai = an+1 +
n∑

i=1

ai −
n∑

i=1

ai − 1 = an+1 − 1 6= an − 1

⇒ Statement does not hold.

2. (a) Solution 1. Notice that every vector can be paired with a vector pointing in the opposite di-
rection, for example we have v7 = −v1, and in general, vi+6 = −vi, for i = 1, 2, . . . , 6.
Therefore the sum is a zero vector, that is

12∑
i=1

vi = 0.

Solution 2. Vectors v1, . . . ,v12 all lie on a unit circle, with equidistant angles. Therefore, we
can write the vectors as

vi =

(
cos

(
π

2
− i2π

12

)
, sin

(
π

2
− i2π

12

))>
=

(
cos

(
π

2
− iπ

6

)
, sin

(
π

2
− iπ

6

))>
,

for i = 1, . . . , 12. Since cos(x− π) = − cos(x) and sin(x− π) = − sin(x), we have

vi+6 + vi =

(
cos

(
π

2
− (i+ 6)π

6

)
, sin

(
π

2
− (i+ 6)π

6

))>
+

(
cos

(
π

2
− iπ

6

)
, sin

(
π

2
− iπ

6

))>
=

(
cos

(
π

2
− iπ

6
− π

)
, sin

(
π

2
− iπ

6
− π

))>
+

(
cos

(
π

2
− iπ

6

)
, sin

(
π

2
− iπ

6

))>
= (0, 0)>.

Therefore, we reach the same conclusion as in Solution 1., and we have
∑12

i=1 v
i = 0.

(b) We have

12∑
i=1,i6=4

vi =

(
12∑
i=1

vi

)
− v4 = 0− v4 = −v4 = v10 =

(
cos

(
7π

6

)
,− sin

(
7π

6

))>
with v4 denoting the vector pointing at 4:00. Here we used the used (a) in the 2nd equality.

(c) We have

12∑
i=2

vi +
1

2
v1 =

(
12∑
i=1

vi

)
− v1 +

1

2
v1 = 0− v1

2
= −v1

2
=

v7

2

=

(
1

2
cos

(
π

2
− 7π

6

)
,
1

2
sin

(
π

2
− 7π

6

))>
= −

(
1

2
cos
(π
3

)
,
1

2
sin
(π
3

))>
.

Siehe nächstes Blatt!



(d) We can observe that wi = vi + (0, 1)> holds for all i = 1, . . . , 12. This gives us

12∑
i=1

wi =

12∑
i=1

(
vi + (0, 1)>

)
= 12(0, 1)> +

12∑
i=1

vi = (0, 12)>.

3. (a) We do not need to check conditions 5. and 6. since they are not affected by a different addition
rule.
The first rule does not hold since we have

(v1, v2)
> ⊕ (w1, w2)

> = (v1 + w2, v2 + w1)
> and

(w1, w2)
> ⊕ (v1, v2)

> = (w1 + v2, w2 + v1)
> .

Thus, we would have to have (v1 + w2, v2 + w1)
> = (w1 + v2, w2 + v1)

> for all v and w,
and this is not the case. Take for instance (v1, v2)

> = (1, 0)> and (w1, w2)
> = (0, 0)>.

The second rule does not hold anymore, since

v ⊕ (w ⊕ u) = v ⊕ (w1 + u2, w2 + u1) = (v1 + w2 + u1, v2 + w1 + u2)

while on the other hand

(v ⊕w)⊕ u = (v1 + w2, v2 + w1)⊕ u = (v1 + w2 + u2, v2 + w1 + u1).

Thus, we do not have an equality if u1 6= u2. For example, take v = (1, 0)>,w = (0, 1)> and
u = (−1, 0)>. Plugging these in gives

v ⊕ (w ⊕ u) = (1, 0)> and (v ⊕w)⊕ u = (2,−1)>.

The third rule holds, with a zero vector being the usual zero vector 0 := (0, 0)>, because we
have

(v1, v2)
> ⊕ (0, 0)> = (v1, v2)

>.

The fourth rule holds if for each v we take −v := (−v2,−v1)>, since

v ⊕ (−v) = (v1, v2)
> ⊕ (−v2,−v1)> = (v1 − v1, v2 − v2)> = (0, 0)>.

The seventh rule holds since on hand we have

α·(v+w) = α·(v1+w2, v2+w1)
> = (α·(v1+w2)

>, α·(v2+w1)
>) = (α·v1+α·w2, α·v2+α·w1)

>,

Bitte wenden!



while on the other hand we have

α · v + α ·w = (α · v1, α · v2)> + (α · w1, α · w2)
> = (α · v1 + α · w2, α · v2 + α · w1)

>.

which are clearly equal.
The eighth rule does not hold, since

(α+ β) · v = ((α+ β) · v1, (α+ β) · v2)> ,

while on the other hand

(α · v)⊕ (β · v) = (α · v1, α · v2)> ⊕ (β · v1, β · v2)> = (α · v1 + β · v2, α · v2 + β · v1)> ,

which need not be equal. Take for instance α = 1, β = −1 and v = (1,−1)> thus (α+β)·v =
(0, 0)> while (α · v)⊕ (β · v) = (2, 2)>.

(b) We only need to consider conditions 5., 6., 7. and 8., since the first four conditions hold true
since they are not affected by the new definition of scalar multiplication.
The fifth rule does not hold, since 1� v = (v1, 0)

> is not equal to v = (v1, v2)
> if v2 6= 0.

The sixth rule holds, since
(α · β)� v = (α · β · v1, 0)>

while
α� (β � v) = α� (β · v1, 0)> = (α · β · v1, 0)>.

Therefore, we obtain equality of the expressions above.
The seventh rule also holds. The left hand side gives

α� (v +w) = α� (v1 + w1, v2 + w2)
> = (α · v1 + α · w1, 0)

>

while the right hand side gives

α� v + α�w = (α · v1, 0)> + (α · w1, 0)
> = (α · v1 + α · w1, 0)

> .

Hence, the right hand side is equal to the left hand side of the seventh rule.
The eighth rule holds, since

(α+ β)� v = ((α+ β) · v1, 0)> = (α · v1, 0)> + (β · v1, 0)> = α� v + β � v.

4. (a) First, let us notice that we only need to check the rules 5. − 8., since those are the only rules
which are affected by the change in definition of scalar multiplication. Rules 5., 6. and 7. are
correct since

1� f(x) = f(x),

(α · β)� f(x) = f(α · β · x) = f(α · (β · x)) = α� f(β · x) = α� (β � f(x)) ,
α� (f(x) + g(x)) = α� ((f + g)(x)) = (f + g)(α · x) = f(α · x) + f(β · x)

= α� f(x) + β � g(x) .

Rule number eight is no longer true, since (α + β) � f(x) = f ((α+ β) · x). On the other
hand, we have α� f(x) + β � f(x) = f(α · x) + f(β · x). Thus,

f ((α+ β) · x) = f(α · x) + f(β · x)

would have to hold for any arbitrary function f ∈ C(R), which is clearly not the case. To
provide a specific counterexample, we can take for instance the function f(x) = 1. The left
hand side gives f ((α+ β) · x) = 1, while the right hand side gives f(α · x) + f(β · x) = 2.

Siehe nächstes Blatt!



(b) Analogously to part (a), we only need to check rules 1.− 4. and 7.− 8.. The first rule is broken
since f(g(x)) 6= g(f(x)) in general. For example, if f(x) = x2 and g(x) = x + 3 then
f(g(x)) = f(x+3) = (x+3)2, while g(f(x)) = g(x2) = x2 +3, which are not equal for all
x.
The second rule is correct.
The third rule is correct with the zero vector defined to be e(x) = x. That is, f(e(x)) = f(x)
and e(f(x)) = f(x), so we have an equality.
The fourth rule is not correct in general, since not all continuous functions are invertible on
whole R,for example f(x) = x2, though the rule is true for invertible functions by taking the
inverse to be exactly f−1(x).
The seventh rule is not true in general since the α · f(g(x)) is not equal to α · f(α · g(x)), e.g.
take f(x) = g(x) = x and α = 2.
The eight rule is not true since the left hand side is interpreted as (α+β) ·f(x), while the right
hand side is interpreted as α · f (β · f(x)), which are not equal in general (take for instance
α = 1, β = −1 and f(x) = 1).

5. (a) Yes. Take α, β ∈ R and v,w ∈ R3 such that v1 = v2 and w1 = w2. Then we have

α · v + β ·w = (α · v1 + β · w1, α · v2 + β · w2, α · v3 + β · w3)
>

and α ·v1+β ·w1 = α ·v2+β ·w2. Therefore, since v,w were arbitrary elements of the given
subset, and since α and β were arbitrary scalars, it is a subspace.

(b) No, since α · (v1, v2, v3)> = α · (1, v2, v3)> is not in the set if α = 1
2 .

(c) No, since if v and w ∈ R3 are such that v1 ·v2 ·v3 = 0 andw1 ·w2 ·w3 = 0 there is no guarantee
that v + w will have that property, that is, that (v1 + w1) · (v2 + w2) · (v3 + w3) = 0. Take
v = (1, 0, 0)> and w = (0, 1, 1)>. Then both v and w are in the set, but v +w = (1, 1, 1)>,
hence (v1 + w1) · (v2 + w2) · (v3 + w3) = 1

(d) Yes. Same as in (a), takeα, β ∈ R and v,w ∈ R3 such that v1+v2+v3 = 0 andw1+w2+w3 =
0. Then we have

α · v + β ·w = (α · v1 + β · w1, α · v2 + β · w2, α · v3 + β · w3)

thus,

(α ·v1+β ·w1)+(α ·v2+β ·w2)+(α ·v3+β ·w3) = α ·(v1+v2+v3)+β ·(w1+w2+w3) = 0

and it is a subspace.
(e) No, since if v = (v1, v2, v3)

> ∈ R3 satifies v1 ≤ v2 ≤ v3, there is no guarantee that α ·v does
as well. Consider v = (−3,−2,−1)> and α = −1, so that v1 ≤ v2 ≤ v3, but the same is not
true for α · v1, α · v2 and α · v3.

(f) Yes, a set of all linear combinations of two vectors satisfies the conditions for a subspace by
definition.

(g) Yes. Take arbirtrary α, β ∈ R and f, g ∈ C(R) such that
∫ 1

0
f(x)dx = 0,

∫ 1

0
g(x)dx = 0.

Then for h(x) = α · f(x) + β · g(x) we have∫ 1

0

h(x)dx =

∫ 1

0

(α · f(x) + β · g(x)) dx = α ·
∫ 1

0

f(x)dx+ β ·
∫ 1

0

g(x)dx = 0 ,

because of linearity of integration.
(h) No, since if p(0) = 1 and q(0) = 1 then for r(x) = p(x) + q(x) ∈ P2 we have

r(0) = p(0) + q(0) = 2 .

(i) Yes. Take p, q ∈ P7 such that p(0) = 2 · p′(0) and q(0) = 2 · q′(0). For arbitrary α, β ∈ R we
hence have

(α·p+β·q)(0) = α·p(0)+β·q(0) = 2·α·p′(0)+2·β·q′(0) = 2·(α · f ′ + β · g′) (0) = 2·(α · p+ β · q)′ (0).


