Solutions - Problem Sheet 5

1. Look at the separate file concerning multiple choice problems.
2. a) We have

$$
\mathbf{A B}=\left(\begin{array}{ll}
0 & 7 \\
0 & 7
\end{array}\right) \quad \text { and } \quad \mathbf{A C}=\left(\begin{array}{ll}
3 & 1 \\
6 & 2
\end{array}\right)
$$

Adding them up we have $\mathbf{A B}+\mathbf{A C}=\left(\begin{array}{ll}3 & 8 \\ 6 & 9\end{array}\right)$.
On the other hand, we have $\mathbf{B}+\mathbf{C}=\left(\begin{array}{ll}3 & 3 \\ 0 & 1\end{array}\right)$. Multiplying by \mathbf{A} from the right, we get $\mathbf{A}(\mathbf{B}+\mathbf{C})=\left(\begin{array}{ll}3 & 8 \\ 6 & 9\end{array}\right)$. Therefore, the matrices are equal to each other, that is, we have $\mathbf{A B}+\mathbf{A C}=\mathbf{A}(\mathbf{B}+\mathbf{C})$.
b) We have $\mathbf{B C}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. That means that $\mathbf{A}(\mathbf{B C})=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ as well. Conversely, we have $\mathbf{A B}=\left(\begin{array}{ll}0 & 7 \\ 0 & 7\end{array}\right)$. Multiplying by \mathbf{C} from the left $(\mathbf{A B}) \mathbf{C}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. In conclusion, we have $\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}$ in this example.
3. (i) a) We have

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{ll}
-1 & 4 \\
-1 & 4
\end{array}\right)
$$

and

$$
\mathbf{A}^{2}-\mathbf{B}^{2}=\left(\begin{array}{ll}
1 & 3 \\
0 & 4
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 3 \\
0 & 3
\end{array}\right)
$$

b) Recall that for the case of two scalars $a, b \in \mathbb{R}$ we have $(a+b)(a-b)=a^{2}-b^{2}$. Why is this not the case when it comes to matrices? Let us apply the distributive property; $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$ and $(\mathbf{B}+\mathbf{C}) \mathbf{A}=\mathbf{B A}+\mathbf{C A}$ to $(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})$. We have

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathbf{B})=(\mathbf{A}+\mathbf{B}) \mathbf{A}-(\mathbf{A}+\mathbf{B}) \mathbf{B}=\mathbf{A}^{2}+\mathbf{B} \mathbf{A}-\mathbf{A B}-\mathbf{B}^{2}
$$

Hence, the previous equation is equal to $\mathbf{A}^{2}-\mathbf{B}^{2}$ only when $\mathbf{A B}=\mathbf{B A}$, that is, only if matrices \mathbf{A} and \mathbf{B} commute.
c) As we have mentioned, we will have an equality if \mathbf{C} and \mathbf{D} commute. Here are a couple of examples of such matrices
$-\mathbf{C}=\mathbf{D}$
$-\mathbf{C}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \mathbf{D}$ arbitrary

$$
\begin{aligned}
& -\mathbf{C}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \mathbf{D} \text { arbitrary } \\
& -\mathbf{C}=\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right), \mathbf{D}=\left(\begin{array}{cc}
d_{1} & 0 \\
0 & d_{2}
\end{array}\right)
\end{aligned}
$$

(ii) We have

$$
\mathbf{A}+\mathbf{B}=\left(\begin{array}{ll}
2 & 2 \\
3 & 0
\end{array}\right)
$$

Therefore

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{B})=\left(\begin{array}{cc}
10 & 4 \\
6 & 6
\end{array}\right)
$$

On the other hand we have

$$
\mathbf{A}^{2}+2 \mathbf{A B}+\mathbf{B}^{2}=\left(\begin{array}{cc}
16 & 2 \\
3 & 0
\end{array}\right)
$$

Hence, $(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{B})$ is indeed not equal to $\mathbf{A}^{2}+2 \mathbf{A B}+\mathbf{B}^{2}$. In order to get the correct rule, we again use the distributive properties

$$
(\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{B})=(\mathbf{A}+\mathbf{B}) \mathbf{A}+(\mathbf{A}+\mathbf{B}) \mathbf{B}=\mathbf{A}^{2}+\mathbf{B} \mathbf{A}+\mathbf{A B}+\mathbf{B}^{2}
$$

4. We have $\mathbf{A} \in \mathbb{R}^{3 \times 3}, \mathbf{B} \in \mathbb{R}^{3 \times 2}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3 \times 1}$. By straightforward computation it follows

- $\mathbf{A B}=\left(\begin{array}{cc}23 & 26 \\ 31 & 36 \\ -6 & -8\end{array}\right)$.
- $\mathbf{B A}$ is not defined.
- $\mathbf{A x}=\left(\begin{array}{c}-21 \\ -5 \\ -7\end{array}\right)$.
- $\mathbf{A}^{2}=\left(\begin{array}{ccc}-4 & -19 & 1 \\ -3 & -2 & 9 \\ -2 & -3 & -10\end{array}\right)$.
- \mathbf{B}^{2} is not defined.
- $\mathbf{y x}$ is not defined.
- $\mathbf{y}^{\top} \mathbf{x}=12$.
- $\mathbf{x y}^{\top}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 2 & 6 & -4 \\ -3 & -9 & 6\end{array}\right)$.
- $\mathbf{B}^{\top} \mathbf{y}=\binom{4}{6}$.
- $\mathbf{y}^{\top} \mathbf{B}=(4,6)$.

5. a) We have

$$
\mathbf{A}_{1}=\mathbf{A}-\mathbf{I}_{n}=\left(\begin{array}{lll}
0 & 2 & 4 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

Now we can compute

$$
\mathbf{A}_{1}^{2}=\mathbf{A}_{1} \cdot \mathbf{A}_{1}=\left(\begin{array}{lll}
0 & 0 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \text { and } \mathbf{A}_{1}^{3}=\mathbf{A}_{1} \cdot \mathbf{A}_{1}^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Therefore, we also have $\mathbf{A}_{1}^{4}=\mathbf{A}_{1} \mathbf{A}_{1}^{3}=\mathbf{A}_{1} \mathbf{0}=\mathbf{0}$, since \mathbf{A}_{1}^{3} is the zero matrix. By induction it follows that $\mathbf{A}_{1}^{k}=\mathbf{0}$ for all $k \geq 3$.
b) Since $\mathbf{A}_{1}^{k}=\mathbf{0}$ for $k \geq 3$ the formula (1), with $k=10$ and $n=3$, reduces to

$$
\mathbf{A}^{10}=\left(\mathbf{I}_{3}+\mathbf{A}_{1}\right)^{10}=\mathbf{I}_{3}+\binom{10}{1} \mathbf{A}_{1}+\binom{10}{2} \mathbf{A}_{1}^{2}
$$

In other words, we have

$$
\mathbf{A}^{10}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+10\left(\begin{array}{lll}
0 & 2 & 4 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right)+45\left(\begin{array}{lll}
0 & 0 & 6 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 20 & 310 \\
0 & 1 & 30 \\
0 & 0 & 1
\end{array}\right)
$$

6. (i)
```
%% Problem 6.(i).a)
% INPUT
% n - parameter describing the size of the matrix
% OUTPUT
% Z - nxn matrix, whose non-zero entries are shaped like the letter Z
function Z = ZShaped(n)
Z = sparse(ones(n-1, 1), (1:(n-1))', ones(n-1,1), n, n) + sparse((1:n)',...
    (n:-1:1)', (1:n)', n, n)+sparse( n*ones(n-1, 1), (2:n)', ...
    n*ones(n-1,1)', n, n);
```

\%\% Problem 6.(i).b)
\% INPUT
\% n - parameter describing the size of the matrix
\% OUTPUT
$\% X$ - nxn matrix, whose non-zero entries are shaped like the letter X
function $X=X$ Shaped (n)
$X=2 * \operatorname{sparse}\left((1: n)^{\prime},(1: n)^{\prime}, \operatorname{ones}(n, 1), n, n\right)+2 * \operatorname{sparse}\left((1: n)^{\prime}, \ldots\right.$
$(n:-1: 1)$ ', ones $(n, 1))$;
\% If n is an odd number then by the previous equation the value of the
\% entry in the middle of the diagonal would be doubled, so we have to reset
\% it.
if $\bmod (n, 2)$
$X((n+1) / 2,(n+1) / 2)=2 ;$

```
%% Problem 6.(i).c)
% INPUT
% n - parameter describing the size of the matrix
% OUTPUT
% T - nxn, three band matrix
function T = ThreeBand(n)
T = sparse( (1:n)', (1:n)', ones (n,1))+\operatorname{sparse}((2:n)',(1:n-1)',\ldots
    2*ones (n-1,1), n, n)+sparse((3:n)',(1:n-2)',3*ones(n-2,1), n, n);
```

(ii) a) Let \mathbf{A} be a matrix whose non-zero entries form a pattern shaped like the letter \mathbf{Z}, and denote $\mathbf{B}=\mathbf{A} \cdot \mathbf{A}$. For an arbitrary element of \mathbf{B} by the definition of matrix-matrix multiplication we have

$$
b_{i j}=\sum_{k=1}^{n} a_{i k} a_{k j}
$$

Due to the definition of \mathbf{A} we have that $a_{i k} \neq 0$ only if either $i=1, i=n$ or $k=n+1-i$. Cases when $i=1$ and $i=n$ refer to the first and the last row of \mathbf{B}. In the last case, $k=n+1-i$, we have

$$
b_{i j}=a_{i, n+1-i} a_{n+1-i, j}
$$

Now, $a_{n+1-i, j}$ is non-zero only if $j=n+1-(n+1-i)=i$. Therefore, $b_{i j}$ is non-zero only
$-i=1$,
$-i=n$,
$-j=i$.
In other words, \mathbf{B} is sparse, and it has non-zero entries forming a pattern shaped like the reflected letter Z, that is, shaped like Σ
b) Let \mathbf{A} be a matrix whose non-zero entries form a pattern shaped like the letter X , and denote $\mathbf{B}=\mathbf{A A}$. For an arbitrary element of \mathbf{B} by the definition of matrix-matrix multiplication we have

$$
b_{i j}=\sum_{k=1}^{n} a_{i k} a_{k j}
$$

Due to the definition of \mathbf{A} we have that $a_{i k} \neq 0$ only if $k=i$ or $k=n+1-i$. Therefore

$$
b_{i j}=a_{i i} a_{i j}+a_{i, n+1-i} a_{n+1-i, j} .
$$

Furthermore, we have that $a_{i j}$ and $a_{n+1-i, j}$ are non-zero only if $j=1$ or $j=n+i-1$. Therefore, $b_{i j}$ is non-zero only
$-j=i$,
$-j=n+1-i$.
In other words, \mathbf{B} is sparse and it has non-zero entries forming a pattern shaped like the letter X .
c) Let \mathbf{A} be a three-band matrix as described in the wording of the problem, and denote $\mathbf{B}=\mathbf{A} \mathbf{A}$. For an arbitrary element of \mathbf{B} by the definition of matrix-matrix multiplication we have

$$
b_{i j}=\sum_{k=1}^{n} a_{i k} a_{k j}
$$

By the definition of \mathbf{A} we have that, for $i \geq 3$, entry $a_{i k}$ is non-zero only if $k=i, i+1$ or $k=i+2$. Hence, we have

$$
b_{i j}=a_{i i} a_{i j}+a_{i, i+1} a_{i+1, j}+a_{i, i+2} a_{i+2, j}
$$

Applying the same logic again to $a_{i j}, a_{i+1, j}$ and $a_{i+2, j}$ we have that $b_{i j}$ is non-zero only if $j=i, i+1, i+2, i+3$ or $j=i+4$. That is because $a_{i j} \neq 0$ only if $j=i, i+1$ or $j=i+2, a_{i+1, j} \neq 0$ only if $j=i+1, i+2$ or $j=i+3$, and finally, $a_{i+2, j} \neq 0$ only if $j=i+2, i+3$ or $j=i+4$. Therefore, \mathbf{B} is a sparse, five-band matrix, with non-zero entries on the main diagonal and the four sub-diagonals below the main diagonal.

```
(iii) %% Problem 6.(iiii).a)
    % INPUT
    % x - a vector
    % OUTPUT
    % y - result of multiplying x by a Z-shaped sparse matrix.
    function y = MultiplyZShaped( x )
    n = length(x);
y = zeros(size(x)); % Initialising the vector
% First and last entry of y abide to a different rule than other entries
y(1) = dot(ones(size(x)), x);
y(n) = n*dot(ones(size(x)), x);
% The remaining entries
y(2:n-1)=(2:(n-1)).'.* x(n-1:-1:2);
%% Problem 6.(iii).b)
    % INPUT
    % x - a vector
    % OUTPUT
    % y - result of multiplying }x\mathrm{ by a X-shaped sparse matrix.
    function y = MultiplyXShaped( x )
    y = zeros(size(x)); % Initialising vector y
    for i = 1 : length(x)
    y(i) = 2*(x(i) +x(length(x)-i+1));
end
    % Same as when constructing X, we deal with the case when }x\mathrm{ has an odd
    % number of entries separately.
if mod(length(x), 2)
    y( (length (x) +1)/2) = y( (length(x) +1)/2) /2;
19 end
1 %% Problem 6.(iii).c)
% INPUT
3)
% OUTPUT
```

```
5 % y - result of multiplying }x\mathrm{ by a three band sparse matrix.
function y = MultiplyThreeBand( x)
y = zeros(size(x)); % Initialising y
1 1 \text { \% First and second entry of y adhere to a different rule than other entries}
y(1) = x(1);
y(2) = 2*x(1)+x(2);
1 5 \text { \% Computing the remaining entries}
for i = 3 : length(y)
    y(i) = 3*x(i-2)+2*x(i-1)+x(i);
end
```

