Problem Sheet 8 - Solutions

1. We can write the overdetermined linear system as

$$
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) x=\left(\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{n}
\end{array}\right)
$$

In order to solve it system we shall use normal equations. Denote $\mathbf{A}=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{c}m_{1} \\ m_{2} \\ \vdots \\ m_{n}\end{array}\right)$.
Then $\mathbf{A}^{\top} \mathbf{A}=n$, and $\mathbf{A}^{\top} b=m_{1}+\ldots+m_{n}$. Therefore

$$
\mathbf{A}^{\top} \mathbf{A} x=\mathbf{A}^{\top} \mathbf{b} \Rightarrow n x=m_{1}+\ldots+m_{n}
$$

Therefore, the least squares solution is the arithmetic mean of the measurements

$$
x=\frac{m_{1}+\ldots+m_{n}}{n}
$$

2. a) We have

$$
y_{i}=f\left(t_{i}\right)=\alpha e^{\beta t_{i}}
$$

This is the governing non-linear system of equations.
b) Let $g(t)=\log f(t)$, which is well defined since $f(t)>0$ for all t. Therefore, we have

$$
g(t)=\log f(t)=\log \alpha+\log e^{\beta t}=a+\beta t
$$

where we have defined $a=\log \alpha$. In an accordance with g we also, define $b_{i}:=\log y_{i}$. Consequently, this freshly linearised problem can now be written as an overdetermined system of linear equations,

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & t_{1} \\
1 & t_{2} \\
\vdots & \vdots \\
1 & t_{n}
\end{array}\right), \mathbf{x}=\binom{a}{\beta} \text { and } \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right), \text { so that } \mathbf{A} \mathbf{x}=\mathbf{b}
$$

c) Let us compute the parameters of governing normal equations $\mathbf{A}^{\top} \mathbf{A x}=\mathbf{A}^{\top} \mathbf{b}$. We have

$$
\mathbf{A}^{\top} \mathbf{A}=\left(\begin{array}{cc}
n & \sum_{i=1}^{n} t_{i} \\
\sum_{i=1}^{n} t_{i} & \sum_{i=1}^{n} t_{i}^{2}
\end{array}\right) \quad \text { and } \quad \mathbf{A}^{\top} \mathbf{b}=\binom{\sum_{i=1}^{n} b_{i}}{\sum_{i=1}^{n} t_{i} b_{i}}
$$

Now, once we find the least squares solution $\mathbf{x}=\binom{a}{\beta}$, we take $\alpha=e^{a}$ and β to be our approximative parameters for f.

```
d)| Problem 2d
% INPUT
% t, y - parameters, such that f(t(i)) = y(i)
% OUTPUT
% alpha, beta - values such that alpha*exp(beta*t) approximates f, thru
% least squares.
function [alpha, beta] = ExpoFuncFit(t, y)
    % Compute the solution of the linearised problem
    x = linearregression(t, log(y));
    % Set the proper output values
    alpha = exp(x(2));
    beta = x(1);
end
function x = linearregression(t,y)
% Solution of linear regression problem (fitting of a line to data) for
% data points \Blue{$(t_i,y_i)$}, \Blue{$i=1,\ldots,n$} passed in the
% \emph{column vectors} \texttt{t} and \texttt{y}.
% The return value is a 2-vector, containing the slope of the fitted line
% in x(1) and its offset in x(2)
n = length(t); if (length(y) ~= n), error('data
% Coefficient matrix of \textbf{overdetermined linear system}
A = [t,ones(n,1)];
% \Red{Determine least squares solution by using MATLAB's $\backslash$
% operator}
x = A\y;
end
```

3. a) Since function f is a linear combination of g_{1} and g_{2}, it can be written as

$$
f(x)=\alpha g_{1}(x)+\beta g_{2}(x)=\alpha 2^{x}+\beta 2^{-x}
$$

where we have to approximate $\alpha, \beta \in \mathbb{R}$. We have

$$
\begin{aligned}
\frac{1}{4} \alpha+4 \beta+8 & =r_{1} \\
\frac{1}{2} \alpha+2 \beta+4 & =r_{2} \\
\alpha+\beta+2 & =r_{3} \\
2 \alpha+\frac{1}{2} b-4 & =r_{4} \\
4 \alpha+\frac{1}{4} b-12 & =r_{5}
\end{aligned}
$$

as the equations for the values of the error vector $\mathbf{r}=\left\|\mathbf{b}-\mathbf{A} \mathbf{x}^{*}\right\|$, where

$$
\mathbf{A}=\left(\begin{array}{cc}
\frac{1}{4} & 4 \\
\frac{1}{2} & 2 \\
1 & 1 \\
2 & \frac{1}{2} \\
4 & \frac{1}{4}
\end{array}\right), \mathbf{b}=\left(\begin{array}{c}
-8 \\
-4 \\
-2 \\
4 \\
12
\end{array}\right) \quad \text { and } \quad \mathbf{x}=\binom{\alpha}{\beta}
$$

b) We have

$$
\mathbf{A}^{\top} \mathbf{A}=\left(\begin{array}{cc}
\frac{341}{16} & 5 \\
5 & \frac{341}{16}
\end{array}\right), \mathbf{A}^{\top} \mathbf{b}=\binom{50}{-37}
$$

c) Solving normal equations $\mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}$ yields

$$
\alpha=\frac{3680}{1263} \text { and } b=-\frac{3056}{1263} .
$$

4. a) There are $\binom{n}{2}$ values of $d_{i j}$.
b) Let us define

$$
\mathbf{A}=\left(\begin{array}{ccccccc}
-1 & 1 & 0 & \cdots & & \\
-1 & 0 & 1 & 0 & \cdots & \\
0 & -1 & 1 & 0 & \cdots & & \\
-1 & 0 & 0 & 1 & 0 & \ldots & \\
0 & -1 & 0 & 1 & 0 & \cdots & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

and

$$
\mathbf{d}=\left(\begin{array}{c}
d_{21} \\
d_{31} \\
d_{32} \\
d_{41} \\
d_{42} \\
\vdots
\end{array}\right)
$$

Then our overdetermined system is $\mathbf{A x}=\mathbf{d}$, where $\mathbf{x}=\left(\begin{array}{c}p_{1} \\ p_{2} \\ \vdots \\ p_{n}\end{array}\right)$. In conclusion, $\mathbf{A} \in \mathbb{R}^{\binom{n}{2}, n}$, $\mathbf{d} \in \mathbb{R}^{\binom{n}{2}}$ and $\mathbf{x} \in \mathbb{R}^{n}$.
c) Let us compute the $\operatorname{ker}(A)$. We want to find all \mathbf{x} such that $\mathbf{A x}=\mathbf{0}$. We have

$$
\left(\begin{array}{ccccccc}
-1 & 1 & 0 & \cdots & & \\
-1 & 0 & 1 & 0 & \ldots & \\
0 & -1 & 1 & 0 & \cdots & \\
-1 & 0 & 0 & 1 & 0 & \cdots & \\
0 & -1 & 0 & 1 & 0 & \cdots & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)\left(\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

This is equivalent to having $p_{i}-p_{j}=0$ for all $n \geq i>j \geq 1$. In other words, we have $p_{i}=p_{j}$ for all i, j. Therefore, $\mathbf{A x}=\mathbf{0}$ if and only if $p_{i}=\alpha$, for all $i=1, \ldots, n$ and an arbitrary $\alpha \in \mathbb{R}$. Thus $\operatorname{ker}(A)=\operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)\right\}$. This implies that $\operatorname{dim}(\operatorname{ker}(A))=1$, therefore, $\operatorname{rank}(A)<n$, which means that the equation $\mathbf{A x}=\mathbf{d}$ will not have a unique solution, since it violates the condition 3.9.2.E.

Let us consider a different system, Instead of considering p_{i} let us shift the whole system by p_{1}, in other words, define $\tilde{p}_{i}=p_{i}-p_{1}$. Notice that we now still have

$$
\tilde{p}_{i}-\tilde{p}_{j}=p_{i}-p_{1}-p_{j}+p_{1}=d_{i j}
$$

We also have $\tilde{p}_{1}=0$. Therefore, solving

$$
\mathbf{A}=\left(\begin{array}{cccccc}
-1 & 1 & 0 & \ldots & & \\
-1 & 0 & 1 & 0 & \ldots & \\
0 & -1 & 1 & 0 & \ldots & \\
-1 & 0 & 0 & 1 & 0 & \ldots \\
0 & -1 & 0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)\left(\begin{array}{c}
0 \\
\tilde{p}_{2} \\
\vdots \\
\tilde{p}_{n}
\end{array}\right)=\left(\begin{array}{c}
d_{21} \\
d_{31} \\
d_{32} \\
d_{41} \\
d_{42} \\
\vdots
\end{array}\right)
$$

is equivalent to solving $\tilde{\mathbf{A}} \tilde{\mathbf{x}}=\mathbf{d}$, where

$$
\tilde{\mathbf{A}}=\left(\begin{array}{ccccccc}
1 & 0 & \cdots & & & \\
0 & 1 & 0 & \ldots & & & \\
-1 & 1 & 0 & \cdots & & & \\
0 & 0 & 1 & 0 & \cdots & \\
-1 & 0 & 1 & 0 & \cdots & & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

is created by removing the first column of \mathbf{A} and $\tilde{\mathbf{x}}=\left(\begin{array}{c}\tilde{p}_{2} \\ \tilde{p}_{3} \\ \vdots \\ \tilde{p}_{n}\end{array}\right)$. This modified matrix $\binom{n}{2} \times$ $(n-1)$ matrix $\tilde{\mathbf{A}} \underset{\tilde{\mathbf{A}}}{ }$ has an empty kernel, since solving $\tilde{\mathbf{A}} \tilde{\mathbf{x}}=\mathbf{0}$ gives $\tilde{p}_{2}=0, \tilde{p}_{3}=0, \ldots$ and so on. Therefore, $\tilde{\mathbf{A}}$ is a matrix of full $\operatorname{rank}(\operatorname{as} \operatorname{dim}(\operatorname{ker}(A))=0)$, and it admits a unique least squares solution.
d) For $n=5$, the matrix of the modified system is given by

$$
\tilde{\mathbf{A}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

so that the overdetermined system is given by

$$
\tilde{\mathbf{A}} \tilde{\mathbf{x}}=\left(\begin{array}{l}
d_{21} \\
d_{31} \\
d_{32} \\
d_{41} \\
d_{42} \\
d_{43} \\
d_{51} \\
d_{52} \\
d_{53} \\
d_{54}
\end{array}\right) .
$$

Let us write down the normal equations. We compute

$$
\tilde{\mathbf{A}}^{\top} \tilde{\mathbf{A}}=\left(\begin{array}{cccc}
4 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right)
$$

and

$$
\tilde{\mathbf{A}}^{\top} \mathbf{d}=\left(\begin{array}{l}
d_{21}-d_{32}-d_{42}-d_{52} \\
d_{31}+d_{32}-d_{43}-d_{53} \\
d_{41}+d_{42}+d_{43}-d_{54} \\
d_{51}+d_{52}+d_{53}+d_{54}
\end{array}\right)
$$

Hence, the normal equations are $\tilde{\mathbf{A}}^{\top} \tilde{\mathbf{A}} \tilde{\mathbf{x}}=\tilde{\mathbf{A}}^{\top} \mathbf{d}$.
e)
) Problem 4 e
2 \% INPUT
\% D - a strictly lower triangular matrix
\% OUTPUT
$\% p$ - vector containing the shited values, \tilde\{p\}_2,..., \tilde\{p\}_n
function $p=$ RoadLengths (D)
\% Find the indices of non-zero entries
$[\mathrm{I}, \mathrm{J}]=\mathrm{find}(\mathrm{D},>0) ;$
\% Determine the size of A
m = size(D, 1);
$\mathrm{n}=$ length (I);
\% Build A, in a sparse form
$A=\operatorname{sparse}\left(\left[(1: n)^{\prime} ;(1: n)^{\prime}\right],[I ; J],[-\operatorname{ones}(n, 1) ;\right.$ ones $\left.(n, 1)], n, m\right) ;$
\% Remove A 's first column to ensure uniqueness of our least squares solution
$A=A(:, 2: e n d) ;$
18 \% Extract the right hand side vector
$\mathrm{d}=$ nonzeros (D^{\prime});
20 \% Finally, solve the equation
$\mathrm{p}=\mathrm{A} \backslash \mathrm{d}$;
5. a) Let us show that

$$
\left(\begin{array}{cc}
\mathbf{A}^{\top} & \mathbf{0} \tag{1}\\
\mathbf{I} & \mathbf{A}
\end{array}\right)\binom{\mathbf{r}}{\mathbf{x}}=\binom{\mathbf{0}}{\mathbf{b}}
$$

implies $\mathbf{A}^{\top} \mathbf{A x}=\mathbf{A}^{\top} \mathbf{b}$. Multiplying (1) through we have

$$
\begin{aligned}
\mathbf{A}^{\top} \mathbf{r} & =\mathbf{0} \\
\mathbf{r}+\mathbf{A} \mathbf{x} & =\mathbf{b}
\end{aligned}
$$

Multiplying $\mathbf{r}+\mathbf{A x}=\mathbf{b}$ by \mathbf{A}^{\top} from the left we have

$$
\mathbf{A}^{\top} \mathbf{r}+\mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}
$$

Plugging in $\mathbf{A}^{\top} \mathbf{r}=\mathbf{0}$ into the preceding equation gives $\mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}$.
Conversely, let us assume that $\mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}$ holds. Define $\mathbf{r}=\mathbf{A x}-\mathbf{b}$. Recall that we can do that since \mathbf{A}, \mathbf{x} and \mathbf{b} are known to us. Therefore, the what remains to be proven is that such an \mathbf{r} satisfies $\mathbf{A}^{\top} \mathbf{r}=\mathbf{0}$, but we have

$$
\mathbf{A}^{\top} \mathbf{r}=\mathbf{A}^{\top} \mathbf{A} \mathbf{x}-\mathbf{A}^{\top} \mathbf{b}=\mathbf{0}
$$

since \mathbf{x} is the solution of our normal equations. Hence, the converse also holds.
b) From a) we have $\mathbf{r}=\mathbf{A x}-\mathbf{b}$.
c) In problems 4.d) and 4.e) the overdetermined matrix of the system, \mathbf{A}, was sparse, but the matrix $\mathbf{A}^{\top} \mathbf{A}$ which concerns normal equations, was a dense matrix. Therefore, a major benefit of $\left(\begin{array}{cc}\mathbf{A}^{\top} & \mathbf{0} \\ \mathbf{I} & \mathbf{A}\end{array}\right)$ is that it is sparse, provided that the original matrix \mathbf{A} is also sparse.
6. a) Take

$$
\mathbf{A}=\left(\begin{array}{cc}
x_{1} & x_{2} \\
x_{2} & x_{1}+x_{3} \\
x_{3} & x_{2}+x_{4} \\
\vdots & \vdots \\
x_{m-1} & x_{m-2}+x_{m} \\
x_{m} & x_{m-1}
\end{array}\right), \mathbf{x}=\binom{\alpha}{\beta} \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

Therefore, our overdetermined system is $\mathbf{A x}=\mathbf{b}$.
b) Denote

$$
\mathbf{C}=\mathbf{A}^{\top} \mathbf{A}=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{m} \\
x_{2} & x_{1}+x_{3} & \ldots & x_{m-1}
\end{array}\right)\left(\begin{array}{cc}
x_{1} & x_{2} \\
x_{2} & x_{1}+x_{3} \\
x_{3} & x_{2}+x_{4} \\
\vdots & \vdots \\
x_{m} & x_{m-1}
\end{array}\right)
$$

Then we have $c_{11}=\sum_{i=1}^{m} x_{i}^{2}$. Also,

$$
\begin{aligned}
c_{12}=c_{21} & =x_{1} x_{2}+\sum_{i=2}^{m-1} x_{i}\left(x_{i-1}+x_{i+1}\right)+x_{m-1} x_{m}=x_{1} x_{2}+\sum_{i=2}^{m-1} x_{i} x_{i-1}+\sum_{i=2}^{m-1} x_{i} x_{i+1}+x_{m} x_{m-1} \\
& =\sum_{i=2}^{m} x_{i} x_{i-1}+\sum_{i=1}^{m-1} x_{i} x_{i+1}=2 \sum_{i=1}^{m-1} x_{i} x_{i+1}
\end{aligned}
$$

For the least entry of $\mathbf{A}^{\top} \mathbf{A}$ we have

$$
c_{22}=x_{2}^{2}+\sum_{i=2}^{m-1}\left(x_{i-1}+x_{i+1}\right)^{2}+x_{m}^{2}=2 \sum_{i=2}^{m-2} x_{i}^{2}+2 \sum_{i=2}^{m-1} x_{i-1} x_{i+1}+x_{1}^{2}+x_{m}^{2}
$$

Let us now compute $\mathbf{A}^{\top} \mathbf{b}$. We have

$$
\mathbf{A}^{\top} \mathbf{b}=\binom{\sum_{i=1}^{m} x_{i} y_{i}}{x_{2} y_{1}+x_{m-1} y_{m}+\sum_{i=2}^{m-1} y_{i}\left(x_{i-1}+x_{i+1}\right)}
$$

```
c) % Problem 6c)
    % INPUT
    % x, y - signals, of equal length
    % OUTPUT
    % beta, alpha - parameters which give an appropriate least squares solution
    function [beta, alpha] = CrosstalkChannel(x, y)
    % Here we are addapting the linearregression.m code
    n = length(y); if (length(x) ~ = n), error('data S size (mismatch'); end
    %B Build the matrix of the overdetermined system
13 A = [x, [x(2); x(1:n-2)+x(3:n);x(n-1)] ];
    % Compute the solution
    solution = A\y;
    % Assign appropriate values
    alpha = solution(1);
    beta = solution(2);
1 9
end
```

