Mittsemesterprüfung

Lineare Algebra und Numerische Mathematik D-BAUG m HS~2013

Prof. R. Hiptmair

Name		Note
Vorname		
Studiengang		
Leginummer		
Datum	10.10.2013	

1	2	3	4	Total

- Nur Stifte und Legi auf dem Tisch!
- Mobiltelefone, Tablets, etc. ausgeschaltet in der Tasche
- Aufgabenblätter sind in den braunen Kuverts. Diese bitte mit Ihrem Namen beschriften.
- Braune Kuverts dürfen erst auf Anweisung geöffnet werden!
- Bitte nicht mit Bleistift / Rot / Grün schreiben!
- Zugelassene Hilfsmittel: Keine.
- Prüfungsdauer: 20 Minuten.
- Bitte füllen Sie zuerst das Deckblatt aus.
- Schreiben Sie Lösungen in die dafür vorgesehenen Felder.
- Nach Prüfungsende die ausgefüllten Aufgabenblätter bitte in das mit Ihrem Namen beschriftete braune Kuvert stecken.

Viel Erfolg!

Mittsemesterprüfung

Lineare Algebra und Numerische Mathematik

D-BAUG

HS 2013

Prof. R. Hiptmair

Die Lösungswege müssen, abgesehen von Aufgabe 1 und 2, nachvollziehbar dargestellt sein.

Regeln Multiple Choice:

- Es muss keine Begründung gegeben werden. Bemerkungen und Rechnungen auf dem Blatt haben keinen Einfluss auf die Punkte.
- Für jedes richtige Kreuz gibt es einen Punkt, jedes falsche Kreuz gibt einen Punkt Abzug. Falls eine negative Gesamtpunktzahl für eine MC-Aufgabe erreicht wird, werden für die Aufgabe null Punkte verrechnet.

1.	(Multiple Choice: Affiner Raum) (5P)				
	Kreuzen Sie an, welche der folgenden Mengen einen $\mathit{affinen\ Raum}$ in dem angegebenen Vektorraum bilden.				
	(a) $\{\mathbf{x} \in \mathbb{R}^3 : x_1 - 4x_2 - x_3 = 5\} \subset \mathbb{R}^3$				
	\bigcirc ist ein affiner Raum. \bigcirc ist kein affiner Raum.				
	(b) $\left\{ \mathbf{x} \in \mathbb{R}^n : \sum_{j=1}^n j x_j = 1 \right\} \subset \mathbb{R}^n$ für ein $n \in \mathbb{N}$				
	\bigcirc ist ein affiner Raum. \bigcirc ist kein affiner Raum.				
	(c) $\{\mathbf{x} \in \mathbb{R}^n : \langle \mathbf{x}, \mathbf{a} \rangle \cdot \langle \mathbf{x}, \mathbf{b} \rangle = 0\} \subset \mathbb{R}^n$ für ein $n \in \mathbb{N}$ und zwei Vektoren				
	$\mathbf{a},\mathbf{b}\in\mathbb{R}^n\setminus\{0\}$ ungleich dem Nullvektor				
	\bigcirc ist ein affiner Raum. \bigcirc ist kein affiner Raum.				
	(d) $\{\mathbf{p} \in \mathbb{P}_3 : \mathbf{p}'(x) = 1 \text{ für alle } x \in \mathbb{R}\} \subset \mathbb{P}_3$				
	\bigcirc ist ein affiner Raum. \bigcirc ist kein affiner Raum.				
	(e) $\{ \mathbf{f} \in C([0,1]) : \mathbf{f}(x) \ge 0 \text{ für alle } 0 \le x \le 1 \} \subset C([0,1])$				
	\bigcirc ist ein affiner Raum. \bigcirc ist kein affiner Raum.				
	Platz für Notizen (werden nicht bewertet):				
	That I would work the sewer teet).				

2.	(Multiple Choice: Vektoridentitäten) (5P)					
	Sei $(V, +, \cdot)$ ein Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und Norm $ v = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$. Kreuzen Sie an, ob die folgenden Identitäten für alle Vektoren $\mathbf{v}, \mathbf{w} \in (V, +, \cdot)$ richtig sind.					
	(a) $\ \mathbf{v}\ > 0$.	O Richtig.	O Falsch.			
	(b) $\langle \mathbf{v} - \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle = \ \mathbf{v}\ ^2 - \ \mathbf{w}\ ^2$.	O Richtig.	O Falsch.			
	(c) $\ \alpha \mathbf{v}\ = \alpha \ \mathbf{v}\ $, für alle $\alpha \in \mathbb{R}$.	O Richtig.	O Falsch.			
	(d) $\langle \mathbf{v} - \langle \mathbf{v}, \mathbf{w} \rangle \mathbf{w}, \mathbf{w} \rangle = 0$.	O Richtig.	O Falsch.			
	(e) $\langle \mathbf{v}, \mathbf{w} \rangle \le \mathbf{v} \mathbf{w} $.	O Richtig.	O Falsch.			
	Platz für Notizen (werden nicht bewertet):					

3. (Orthogonalität) (8P)

Sei $(V, +, \cdot)$ ein Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Es seien die Vektoren \mathbf{v}, \mathbf{w} aus V gegeben, $\mathbf{w} \neq 0$. Zudem definieren wir $\mathbf{z} \in V$ als

$$\mathbf{z} := \mathbf{v} - \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}$$
.

(a) Beweisen Sie: \mathbf{z} ist orthogonal zu \mathbf{w} . (2P)

3.(a)

(b) Zeigen Sie, dass \mathbf{z} im Allgemeinen nicht orthogonal zu \mathbf{v} steht, indem Sie ein konkretes Gegenbeispiel mit Vektoren im \mathbb{R}^2 geben, wobei im \mathbb{R}^2 das Euklidische Skalarprodukt verwendet werden soll. (2P)

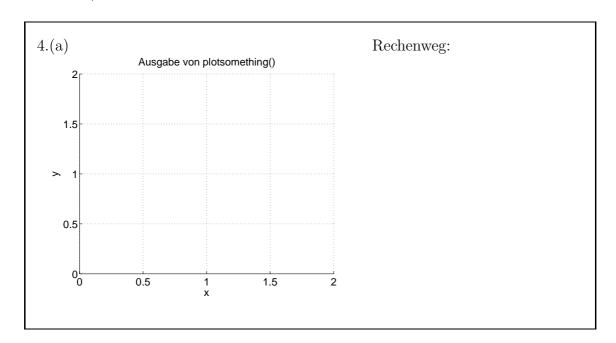
3.(b)

(c) Sei nun konkret $V=\mathbb{P}_2$ der Vektorraum der Polynome vom Grad ≤ 2 . Zudem sei das Skalarprodukt in \mathbb{P}_2 definiert durch

$$\langle \mathbf{p}, \mathbf{q} \rangle := \int_0^1 \mathbf{p}(x) \mathbf{q}(x) \, \mathrm{d}x.$$

Berechnen Sie **z** für $\mathbf{v}(x) = x$, $\mathbf{w}(x) = 1$. (4P)

3.(c)


- 4. (Analytische Geometrie, MATLAB) (6P)
 - (a) Gegeben sei die unten gegebene Funktion plotsomething(a,b). Zeichnen Sie die Ausgabe für plotsomething([3;4],[-3;4]). (4P)

```
function plotsomething(a,b)
    na = norm(a);

nb = norm(b);
    x = a/na + b/nb;
    y = a/na - b/nb;
    plot([x(1);y(1)],[x(2);y(2)],'*-');

axis([0,2,0,2]);
    xlabel('x');
    ylabel('y');
    title('Ausgabe_uvon_uplotsomething()');

end
```


(b) Welche Matrix ergibt die Eingabe

A = [1,ones(1,3);zeros(3,1),diag([1;2;3])] in MATLAB? Geben Sie die Matrix \mathbf{A} an. (2P)

4.(b)		