Problem Sheet 1

1. Determine whether each of the following statements are true for all $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in \mathbb{R}$ and $a, b \in \mathbb{R}$.$\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)=\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}$$\sum_{i=1}^{n} x_{i}=\sum_{k=1}^{n} x_{k}=\sum_{k=1}^{n} x_{n+1-k}$$\sum_{i=1}^{n}\left(a x_{i}+b\right)=a\left(\sum_{i=1}^{n} x_{i}\right)+b$$\sum_{i=1}^{n}\left(x_{i} \cdot y_{i}\right)=\left(\sum_{i=1}^{n} x_{i}\right) \cdot\left(\sum_{i=1}^{n} y_{i}\right)$
$\bigcirc \sum_{i=1}^{n}\left(x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right)=0$
$\bigcirc \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} \cdot y_{j}=\left(\sum_{i=1}^{n} x_{i}\right) \cdot\left(\sum_{j=1}^{n} y_{j}\right)$
$\bigcirc(a-1)\left(\sum_{i=0}^{n} a^{i}\right)=a^{n}-1$
2. In the following, we represent a clock by a unit circle (a circle of radius 1 with a centre at the origin $(0,0))$.
(a) What is the sum \mathbf{s} of the twelve vectors $\mathbf{v}^{1}, \ldots, \mathbf{v}^{12}$ that go from the centre of a clock to the hours $1: 00,2: 00, \ldots, 12: 00$?
(b) If the vector \mathbf{v}^{4} (pointing to $4: 00$) is removed, find the sum of the eleven remaining vectors.
(c) Assume that the vector \mathbf{v}^{1} (pointing to $1: 00$) is halved. Add this new vector to the other eleven vectors $\mathbf{v}^{2}, \ldots, \mathbf{v}^{12}$.
(d) Suppose that the centre of the circle is now at $(0,1)$. Thus, our twelve vectors $\mathbf{w}^{1}, \ldots, \mathbf{w}^{12}$ start from 6:00 at the bottom. Add the new twelve vectors.

(a) For problems 2.(a)-(c)

(b) For problem 2.(d)
3. For the following two problems, let us recall the axioms that vector addition and scalar multiplication defined over a set V must adhere to, for all vectors $\mathbf{v}, \mathbf{w} \in V$ and scalars $\alpha, \beta \in \mathbb{R}$, so that $(V,+, \cdot)$ is a vector space
4. $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$.
5. $\mathbf{v}+(\mathbf{w}+\mathbf{u})=(\mathbf{v}+\mathbf{w})+\mathbf{u}$.
6. There is a unique zero vector $\mathbf{0}$ such that $\mathbf{v}+\mathbf{0}=\mathbf{v}$.
7. For each \mathbf{v} there exists a unique vector $-\mathbf{v}$ such that $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$.
8. $1 \cdot \mathbf{v}=\mathbf{v}$.
9. $(\alpha \cdot \beta) \cdot \mathbf{v}=\alpha \cdot(\beta \cdot \mathbf{v})$.
10. $\alpha \cdot(\mathbf{v}+\mathbf{w})=\alpha \cdot \mathbf{v}+\alpha \cdot \mathbf{w}$.
11. $(\alpha+\beta) \cdot \mathbf{v}=\alpha \cdot \mathbf{v}+\beta \cdot \mathbf{v}$.
(a) Suppose that the addition rule in \mathbb{R}^{2} is defined to be

$$
\mathbf{v} \oplus \mathbf{w}=\left(v_{1}, v_{2}\right) \oplus\left(w_{1}, w_{2}\right):=\left(v_{1}+w_{2}, v_{2}+w_{1}\right)
$$

With the standard scalar-multiplication rule

$$
\alpha \cdot \mathbf{v}=\left(\alpha \cdot v_{1}, \alpha \cdot v_{2}\right)
$$

Show that this is not a vector space, that is, which of the axioms of a vector space hold, and which ones fail?
(b) Suppose the scalar multiplication \odot is defined to be $\alpha \odot \mathbf{v}=\left(\alpha \cdot v_{1}, 0\right)$ instead of $\left(\alpha v_{1}, \alpha v_{2}\right)$. With the standard addition in \mathbb{R}^{2}

$$
\mathbf{v}+\mathbf{w}=\left(v_{1}+w_{1}, v_{2}+w_{2}\right)^{\top}
$$

are all the axioms satisfied for $\left(\mathbb{R}^{2},+, \odot\right)$ to be a vector space?
4. Take the set of all continuous functions $C(\mathbb{R})$.
(a) Consider $(C(\mathbb{R}),+, \odot)$. Which rule is broken if multiplying $f \in C(\mathbb{R})$ by a scalar $\alpha \in \mathbb{R}$ is defined as

$$
(\alpha \odot f)(x):=f(\alpha \cdot x), \text { for all } x \in \mathbb{R}
$$

while we keep the standard addition rule $(f+g)(x):=f(x)+g(x)$, for all $x \in \mathbb{R}$?
(b) If the sum of "vectors" $f(x)$ and $g(x)$ is defined as

$$
(f \oplus g)(x):=f(g(x)) \text { for all } x \in \mathbb{R}
$$

then the "zero vector" is $e(x)=x$. Keep the standard scalar multiplication $(\alpha \cdot f)(x):=$ $\alpha \cdot f(x)$ and consider $(C(\mathbb{R}), \oplus, \cdot)$. Which condtions are broken?
5. Which of the following subsets of \mathbb{R}^{3} are also subspaces of $\left(\mathbb{R}^{2},+, \cdot\right)$, with the standard pointwise addition and scalar multiplication?
(a) The plane of vectors $\left\{\left(v_{1}, v_{2}, v_{3}\right)^{\top} \in \mathbb{R}^{3}: v_{1}=v_{2}\right\}$.
(b) The plane of vectors with $\left\{\left(v_{1}, v_{2}, v_{3}\right)^{\top} \in \mathbb{R}^{3}: v_{1}=1\right\}$.
(c) The vectors with $\left\{\left(v_{1}, v_{2}, v_{3}\right)^{\top} \in \mathbb{R}^{3} \mid v_{1} \cdot v_{2} \cdot v_{3}=0\right\}$.
(d) All vectors that satisfy $\left\{\left(v_{1}, v_{2}, v_{3}\right)^{\top} \in \mathbb{R}^{3}: v_{1}+v_{2}+v_{3}=0\right\}$.
(e) All vectors with $\left\{\left(v_{1}, v_{2}, v_{3}\right)^{\top} \in \mathbb{R}^{3}: v_{1} \leq v_{2} \leq v_{3}\right\}$.
(f) All linear combinations of $\mathbf{v}=(1,4,0)^{\top}$ and $\mathbf{w}=(2,2,3)^{\top}$.

For the following, let us recall that $C(\mathbb{R})$ represents the set of all continuous functions on \mathbb{R}, while \mathcal{P}_{n} is the set of all polynomials of degree less (or equal) than n, both of which we endow with standard pointwise addition and scalar multiplication. That is, we will consider $(C(\mathbb{R}),+, \cdot)$ and $\left(\mathcal{P}_{n},+, \cdot\right)$.
(g) Is $\left\{f(x) \in C(\mathbb{R}): \int_{0}^{1} f(x) d x=0\right\}$ a subspace of $(C(\mathbb{R}),+, \cdot)$?
(h) Is $\left\{p(x) \in \mathcal{P}_{2}: p(0)=1\right\}$ a subspace of $\left(\mathcal{P}_{2},+, \cdot\right)$?
(i) Is $\left\{p(x) \in \mathcal{P}_{7}: p(0)=2 p^{\prime}(0)\right\}$ a subspace of $\left(\mathcal{P}_{7},+, \cdot\right)$?

