Problem Sheet 1

- **1.** Determine whether each of the following statements are true for all $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$ and $a, b \in \mathbb{R}$.
 - $\bigcirc \sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$
 - $\bigcirc \sum_{i=1}^{n} x_i = \sum_{k=1}^{n} x_k = \sum_{k=1}^{n} x_{n+1-k}$
 - $\bigcirc \sum_{i=1}^{n} (ax_i + b) = a\left(\sum_{i=1}^{n} x_i\right) + b$
 - $\bigcirc \sum_{i=1}^{n} (x_i \cdot y_i) = \left(\sum_{i=1}^{n} x_i\right) \cdot \left(\sum_{i=1}^{n} y_i\right)$
 - $\bigcirc \sum_{i=1}^{n} (x_i \frac{1}{n} \sum_{j=1}^{n} x_j) = 0$
 - $\bigcirc \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \cdot y_j = \left(\sum_{i=1}^{n} x_i\right) \cdot \left(\sum_{j=1}^{n} y_j\right)$

$$\bigcirc (a-1) \left(\sum_{i=0}^{n} a^{i} \right) = a^{n} - 1$$

- 2. In the following, we represent a clock by a unit circle (a circle of radius 1 with a centre at the origin (0,0)).
 - (a) What is the sum **s** of the twelve vectors $\mathbf{v}^1, \ldots, \mathbf{v}^{12}$ that go from the centre of a clock to the hours 1:00, 2:00, ..., 12:00?
 - (b) If the vector \mathbf{v}^4 (pointing to 4:00) is removed, find the sum of the eleven remaining vectors.
 - (c) Assume that the vector \mathbf{v}^1 (pointing to 1:00) is halved. Add this new vector to the other eleven vectors $\mathbf{v}^2, \ldots, \mathbf{v}^{12}$.
 - (d) Suppose that the centre of the circle is now at (0, 1). Thus, our twelve vectors $\mathbf{w}^1, \ldots, \mathbf{w}^{12}$ start from 6:00 at the bottom. Add the new twelve vectors.

- **3.** For the following two problems, let us recall the axioms that vector addition and scalar multiplication defined over a set V must adhere to, for all vectors $\mathbf{v}, \mathbf{w} \in V$ and scalars $\alpha, \beta \in \mathbb{R}$, so that $(V, +, \cdot)$ is a vector space
 - 1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$.
 - 2. $\mathbf{v} + (\mathbf{w} + \mathbf{u}) = (\mathbf{v} + \mathbf{w}) + \mathbf{u}.$
 - 3. There is a unique zero vector $\mathbf{0}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$.
 - 4. For each **v** there exists a unique vector $-\mathbf{v}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.
 - 5. $1 \cdot \mathbf{v} = \mathbf{v}$.
 - 6. $(\alpha \cdot \beta) \cdot \mathbf{v} = \alpha \cdot (\beta \cdot \mathbf{v}).$
 - 7. $\alpha \cdot (\mathbf{v} + \mathbf{w}) = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{w}.$
 - 8. $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}.$
 - (a) Suppose that the addition rule in \mathbb{R}^2 is defined to be

 $\mathbf{v} \oplus \mathbf{w} = (v_1, v_2) \oplus (w_1, w_2) := (v_1 + w_2, v_2 + w_1).$

With the standard scalar-multiplication rule

$$\alpha \cdot \mathbf{v} = (\alpha \cdot v_1, \alpha \cdot v_2).$$

Show that this is not a vector space, that is, which of the axioms of a vector space hold, and which ones fail?

(b) Suppose the scalar multiplication \odot is defined to be $\alpha \odot \mathbf{v} = (\alpha \cdot v_1, 0)$ instead of $(\alpha v_1, \alpha v_2)$. With the standard addition in \mathbb{R}^2

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2)^+,$$

are all the axioms satisfied for $(\mathbb{R}^2, +, \odot)$ to be a vector space?

- **4.** Take the set of all continuous functions $C(\mathbb{R})$.
 - (a) Consider $(C(\mathbb{R}), +, \odot)$. Which rule is broken if multiplying $f \in C(\mathbb{R})$ by a scalar $\alpha \in \mathbb{R}$ is defined as

 $(\alpha \odot f)(x) := f(\alpha \cdot x), \text{ for all } x \in \mathbb{R}.$

while we keep the standard addition rule (f + g)(x) := f(x) + g(x), for all $x \in \mathbb{R}$?

(b) If the sum of "vectors" f(x) and g(x) is defined as

$$(f \oplus g)(x) := f(g(x))$$
 for all $x \in \mathbb{R}$,

then the "zero vector" is e(x) = x. Keep the standard scalar multiplication $(\alpha \cdot f)(x) := \alpha \cdot f(x)$ and consider $(C(\mathbb{R}), \oplus, \cdot)$. Which conditions are broken?

- 5. Which of the following subsets of \mathbb{R}^3 are also subspaces of $(\mathbb{R}^2, +, \cdot)$, with the standard pointwise addition and scalar multiplication ?
 - (a) The plane of vectors $\{(v_1, v_2, v_3)^\top \in \mathbb{R}^3 : v_1 = v_2\}.$
 - (b) The plane of vectors with $\{(v_1, v_2, v_3)^\top \in \mathbb{R}^3 : v_1 = 1\}$.

- (c) The vectors with $\{(v_1, v_2, v_3)^\top \in \mathbb{R}^3 | v_1 \cdot v_2 \cdot v_3 = 0\}.$
- (d) All vectors that satisfy $\{(v_1, v_2, v_3)^\top \in \mathbb{R}^3 : v_1 + v_2 + v_3 = 0\}.$
- (e) All vectors with $\{(v_1, v_2, v_3)^\top \in \mathbb{R}^3 : v_1 \le v_2 \le v_3\}.$
- (f) All linear combinations of $\mathbf{v} = (1, 4, 0)^{\top}$ and $\mathbf{w} = (2, 2, 3)^{\top}$.

For the following, let us recall that $C(\mathbb{R})$ represents the set of all continuous functions on \mathbb{R} , while \mathcal{P}_n is the set of all polynomials of degree less (or equal) than n, both of which we endow with standard pointwise addition and scalar multiplication. That is, we will consider $(C(\mathbb{R}), +, \cdot)$ and $(\mathcal{P}_n, +, \cdot)$.

- (g) Is $\{f(x) \in C(\mathbb{R}) : \int_0^1 f(x) dx = 0\}$ a subspace of $(C(\mathbb{R}), +, \cdot)$?
- (h) Is $\{p(x) \in \mathcal{P}_2 : p(0) = 1\}$ a subspace of $(\mathcal{P}_2, +, \cdot)$?
- (i) Is $\{p(x) \in \mathcal{P}_7 : p(0) = 2p'(0)\}$ a subspace of $(\mathcal{P}_7, +, \cdot)$?