Exercise sheet 1

The content of the marked exercise (*) should be known for the exam.

1. Let (G, \cdot) be a group. We say that G is abelian if $\forall x, y \in G, x \cdot y=y \cdot x$. For $g \in G$ we define the order of g, which we denote $\operatorname{ord}_{G}(g)$, as the minimal positive integer n such that $g^{n}=1_{G}$, if such n exists. Else we say that g has infinite order. Prove the following statements for a group G :
2. If $e \in G$ is s.t. $\forall x \in G, e \cdot x=x$, then $e=1_{G}$.
3. G is abelian if and only if the inversion map $G \rightarrow G, x \mapsto x^{-1}$ is a group homomorphism.
4. If $g^{2}=1_{G}$ for every $g \in G$, then G is abelian.
5. If $g \in G$ has finite order, g^{-1} is a power of g.
6. If G is finite, every $g \in G$ has finite order.
7. We will here consider monoids, which are defined in the same way as groups, but without inversion map. More precisely, a monoid consists of a set S together with a map $-\cdot-: G \times G \rightarrow G$ and a distinguished element $1_{S} \in S$ satisfying the following axioms:

- $\forall x, y, z \in S,(x \cdot y) \cdot z=x \cdot(y \cdot z)$
- $\forall x \in S, 1_{S} \cdot x=x \cdot 1_{S}=x$

We say that $y \in S$ is a left (resp., right) inverse of $x \in S$ if $y \cdot x=1_{S}$ (resp., $x \cdot y=1_{S}$).
Let X be a non-empty set and consider the set of functions $\operatorname{End}(X)=\{f: X \rightarrow X\}$.

1. Prove that $\operatorname{End}(X)$, together with the composition of functions \circ, is a monoid for every set X.
2. Prove that $f \in \operatorname{End}(X)$ has a left (resp., right) inverse if and only if f is injective (resp., surjective).
3. For which sets X does there exist $f \in \operatorname{End}(X)$ which has a left inverse but no right inverse?
[You can use this formulation of the axiom of choice: Let $\left\{X_{i}\right\}_{i \in I}$ be a family of nonempty sets indexed by $I \neq \varnothing$. Then there exists a family $\left\{x_{i}\right\}_{i \in I}$ such that $\left.x_{i} \in X_{i}\right]$
4. Show that there are precisely two non-isomorphic groups of order 4 , and construct their multiplication table.
5. Consider the set $\mathbb{Z} \times \mathbb{Z}$ together with the binary operation $*$ defined by

$$
(a, h) *(b, k)=\left(a+(-1)^{h} b, h+k\right)
$$

1. Show that $(\mathbb{Z} \times \mathbb{Z}, *)$ is a group and that it is not abelian.
2. Find all elements having finite order.
3. Consider the projection maps $\pi_{1}, \pi_{2}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\pi_{1}((m, n))=m$ and $\pi_{2}((m, n))=n$. Determine if they are morphism of groups $(\mathbb{Z} \times \mathbb{Z}, *) \rightarrow(\mathbb{Z},+)$.
4. (*) Fix an integer $n>1$ and consider the symmetric group $S_{n}:=\operatorname{Sym}(\{1, \ldots, n\})$. For $p\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ and $\sigma \in S_{n}$, define $p_{\sigma}=p\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)$. Let $f:=\prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
5. Prove that for every permutation $\sigma \in S_{n}$, there exists a unique element $\alpha(\sigma) \in\{ \pm 1\}$ such that $f_{\sigma}(X)=\alpha(\sigma) f$.
6. Show that the resulting map

$$
\alpha: S_{n} \rightarrow\{ \pm 1\}
$$

is a group homomorphism.
3. Let $a \neq b$ be elements of $\{1, \ldots, n\}$, and consider the permutation $\tau \in S_{n}$ switching a and b and fixing all the other elements. Show that $\alpha(\tau)=-1$.

Due to: 25 September 2014, 3 pm.

