Exercise sheet 10

The content of the marked exercises (*) should be known for the exam.

1. (*) (Characterization of gcd and lcm in terms of principle ideals). Let A be a PID and take two non-zero elements $a, b \in A$. Show:
2. $a A+b A=d A$, where d is a greatest common divisor of (a, b) in the sense that
a) $d \mid a$ and $d \mid b$, and
b) for all $d^{\prime} \in A$ s.t. $d^{\prime} \mid a$ and $d^{\prime} \mid b$, we have $d^{\prime} \mid d$.
3. $a A \cap b A=m A$, where m is a least common multiple of (a, b) in the sense that
a) $a \mid m$ and $b \mid m$, and
b) for all $m^{\prime} \in A$ s.t. $a \mid m^{\prime}$ and $b \mid m^{\prime}$, we have $m \mid m^{\prime}$.
4. In the factorial ring $A=\mathbb{C}[X, Y]$ there are elements a and b which are irreducible, with $a A \neq b A$, but for which $a A+b A \neq A$.
5. Let A be a factorial ring.
6. Suppose that $a \in A \backslash A^{\times}, a \neq 0$, with $a=\prod_{i=1}^{k} r_{i}^{n_{i}}$ for some $k, n_{i} \in \mathbb{Z}_{>0}$ and some irreducible elements $r_{i} \in A$ such that $r_{i} A \neq r_{j} A$ for $i \neq j$. Prove that for every $b \in A$, we have that b divides a if and only if we can write

$$
b=u \prod_{i=1}^{k} r_{i}^{m_{i}}, \text { for some } u \in A^{\times} \text {and } 0 \leq m_{i} \leq n_{i} \text { for all } i .
$$

2. Let A be a PID, and $a, b \in A$ elements of the form $a=\prod_{i=1}^{k} r_{i}^{n_{i}}$ and $b=\prod_{j=1}^{l} s_{j}^{m_{j}}$, where $r_{i}, s_{j} \in A$ are all irreducible elements, $k, l, m_{i}, n_{j} \in \mathbb{Z}_{>0}$, and $r_{i} A \neq r_{i^{\prime}} A$ for $i \neq i^{\prime}$ and $s_{j} A \neq s_{j^{\prime}} A$ for $j \neq j^{\prime}$. Prove that a gcd (defined as in Exercise 1) of a and b is

$$
d=\prod_{h=1}^{f} q_{h}^{l_{h}}
$$

where

- $\left\{q_{1}, \ldots, q_{f}\right\}$ is a finite subset of irreducible elements of A,
- $q_{\alpha} A \neq q_{\beta} A$ for $\alpha \neq \beta$,
- $\forall h \in\{1, \ldots, f\}$, there exist i, j such that $q_{h} A=r_{i} A=s_{j} A$ and $l_{h}=$ $\min \left(m_{i}, n_{j}\right)$.

3. (*) (Another formulation of the classification of finitely generated torsion modules) Let A be a PID and $M \neq 0$ a finitely generated torsion module. Show that there exists $k \geq 1$ and elements $a_{1}\left|a_{2}\right| \cdots \mid a_{k} \in A$ such that $a_{i} \neq 0, a_{i} \notin A^{\times}$for all i and

$$
M \cong A / a_{1} A \oplus \cdots \oplus A / a_{k} A .
$$

[Hint: Use the classification you have seen in class and the Chinese Remainder Theorem]
4. Let G be a finite abelian group generated by two elements.

1. Show that

$$
G \cong \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{1} d_{2} \mathbb{Z},
$$

where $d_{1}, d_{2} \geq 1$ are integers.
2. For every prime p, determine $G(p)$.
5. Let G be a finite abelian group and H be a subgroup of G. Prove: there exists a subgroup $H^{\prime} \leq G$ such that $H^{\prime} \cong G / H$. [Hint: Abelian groups are \mathbb{Z}-modules]

Due to: 27 November 2014, 3 pm .

