## Exercise sheet 11

The content of the marked exercises (*) should be known for the exam.

1. For the following values of $\alpha \in \mathbb{C}$, find the minimal polynomial of $\alpha$ over $\mathbb{Q}$ :

- $\alpha=\sqrt{2}+\sqrt{5}$
- $\alpha=\sqrt{3}-\sqrt[3]{3}$
- $\alpha=\lambda+i \lambda$, where $\lambda \in \mathbb{R}_{>0}, \lambda^{4}=5$.

2. Suppose that the field extension $L=K(\alpha)$ over $K$ is finite of odd degree. Prove: $L=K\left(\alpha^{2}\right)$.
3. (*) (Trace and norm for finite field extensions) Let $L$ over $K$ be a finite field extension.
4. For $x \in L$, show that the following is a $K$-linear map:

$$
\begin{aligned}
m_{x}: L & \rightarrow L \\
y & \mapsto x y .
\end{aligned}
$$

When $K=\mathbb{R}, L=\mathbb{C}$ and $\alpha \in \mathbb{C}$, compute the matrix representing $m_{\alpha}$ with respect to the basis $(1, i)$.
2. Show that we have an injective ring homomorphism

$$
\begin{aligned}
r_{L / K}: L & \rightarrow \operatorname{End}_{K}(L) \\
x & \mapsto m_{x} .
\end{aligned}
$$

3. Consider the maps

$$
\begin{aligned}
\operatorname{Tr}_{L / K}: L & \rightarrow K \\
x & \mapsto \operatorname{Tr}\left(m_{x}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{N}_{L / K}: L & \rightarrow K \\
x & \mapsto \operatorname{det}\left(m_{x}\right) .
\end{aligned}
$$

Prove:

- $\operatorname{Tr}_{L / K}$ is $K$-linear
- $\mathrm{N}_{L / K}(x y)=\mathrm{N}_{L / K}(x) \mathrm{N}_{L / K}(y)$ for every $x, y \in L$, and $\mathrm{N}_{L / K}(x)=0$ if and only if $x=0$.

4. Given a tower of finite extensions $L_{1} / L_{2} / K$, show that

$$
\operatorname{Tr}_{L_{1} / K}=\operatorname{Tr}_{L_{2} / K} \circ \operatorname{Tr}_{L_{1} / L_{2}}
$$

[Hint: Get a $K$-basis for $L_{1}$ starting from a $K$-basis for $L_{2}$ and an $L_{2}$-basis for $L_{1}$, then evaluate the right hand side on $\left.\alpha \in L_{1}\right]$.
5. Prove that if $x \in L$ is such that $L=K(x)$, and

$$
\operatorname{Irr}(x, K)(X)=X^{d}+a_{d-1} X^{d-1}+\cdots+a_{1} X+a_{0} \in K[X]
$$

then $\operatorname{Tr}_{L / K}(x)=-a_{d-1}$ and $\mathrm{N}_{L / K}(x)=(-1)^{d} a_{0}$. [Hint: $\left(1, x, \ldots, x^{d-1}\right)$ is a $K$-basis of $L$.]
6. Let $p$ be an odd prime number, $\zeta_{p}=e^{\frac{2 \pi i}{p}}$ and $K_{p}=\mathbb{Q}\left(\zeta_{p}\right)$. Find $\operatorname{Irr}\left(\zeta_{p}, \mathbb{Q}\right)$, $\operatorname{Tr}_{K_{p} / \mathbb{Q}}\left(\zeta_{p}\right), \mathrm{N}_{K_{p} / \mathbb{Q}}\left(\zeta_{p}\right)$ and $\mathrm{N}_{K_{p} / \mathbb{Q}}\left(\zeta_{p}-1\right)$. [Hint: Look at Exercise 2.4 from Exercise sheet 9. Use previous point, and notice that $\mathbb{Q}\left(\zeta_{p}\right)=\mathbb{Q}\left(\zeta_{p}-1\right)$.]
4. Prove that for every algebraic field extension $K / \mathbb{R}$ we have that $K$ is isomorphic either to $\mathbb{R}$ or to $\mathbb{C}$.

Due to: 4 December 2014, 3 pm.

