D-MATH Prof. Emmanuel Kowalski Algebra I

Exercise sheet 11

The content of the marked exercises (*) should be known for the exam.

- **1.** For the following values of $\alpha \in \mathbb{C}$, find the minimal polynomial of α over \mathbb{Q} :
 - $\alpha = \sqrt{2} + \sqrt{5}$
 - $\alpha = \sqrt{3} \sqrt[3]{3}$
 - $\alpha = \lambda + i\lambda$, where $\lambda \in \mathbb{R}_{>0}$, $\lambda^4 = 5$.
- **2.** Suppose that the field extension $L = K(\alpha)$ over K is finite of odd degree. Prove: $L = K(\alpha^2)$.
- **3.** (*) (Trace and norm for finite field extensions) Let L over K be a finite field extension.
 - 1. For $x \in L$, show that the following is a K-linear map:

$$m_x: L \to L$$
$$y \mapsto xy.$$

When $K = \mathbb{R}$, $L = \mathbb{C}$ and $\alpha \in \mathbb{C}$, compute the matrix representing m_{α} with respect to the basis (1, i).

2. Show that we have an injective ring homomorphism

$$r_{L/K}: L \to \operatorname{End}_K(L)$$
$$x \mapsto m_x.$$

3. Consider the maps

$$\operatorname{Tr}_{L/K} : L \to K$$
 (trace map)
 $x \mapsto \operatorname{Tr}(m_x)$

and

$$N_{L/K}: L \to K$$
 (norm map)
 $x \mapsto \det(m_x).$

Prove:

- $\operatorname{Tr}_{L/K}$ is K-linear
- $N_{L/K}(xy) = N_{L/K}(x)N_{L/K}(y)$ for every $x, y \in L$, and $N_{L/K}(x) = 0$ if and only if x = 0.
- 4. Given a tower of finite extensions $L_1/L_2/K$, show that

$$\operatorname{Tr}_{L_1/K} = \operatorname{Tr}_{L_2/K} \circ \operatorname{Tr}_{L_1/L_2}$$

[*Hint*: Get a K-basis for L_1 starting from a K-basis for L_2 and an L_2 -basis for L_1 , then evaluate the right hand side on $\alpha \in L_1$].

5. Prove that if $x \in L$ is such that L = K(x), and

$$Irr(x,K)(X) = X^d + a_{d-1}X^{d-1} + \dots + a_1X + a_0 \in K[X],$$

then $\operatorname{Tr}_{L/K}(x) = -a_{d-1}$ and $\operatorname{N}_{L/K}(x) = (-1)^d a_0$. [*Hint:* $(1, x, \dots, x^{d-1})$ is a *K*-basis of *L*.]

- 6. Let p be an odd prime number, $\zeta_p = e^{\frac{2\pi i}{p}}$ and $K_p = \mathbb{Q}(\zeta_p)$. Find $\operatorname{Irr}(\zeta_p, \mathbb{Q})$, $\operatorname{Tr}_{K_p/\mathbb{Q}}(\zeta_p)$, $\operatorname{N}_{K_p/\mathbb{Q}}(\zeta_p)$ and $\operatorname{N}_{K_p/\mathbb{Q}}(\zeta_p-1)$. [*Hint:* Look at Exercise 2.4 from Exercise sheet 9. Use previous point, and notice that $\mathbb{Q}(\zeta_p) = \mathbb{Q}(\zeta_p-1)$.]
- 4. Prove that for every algebraic field extension K/\mathbb{R} we have that K is isomorphic either to \mathbb{R} or to \mathbb{C} .

Due to: 4 December 2014, 3 pm.