Solutions of exercise sheet 11

The content of the marked exercises (*) should be known for the exam.

1. For the following values of $\alpha \in \mathbb{C}$, find the minimal polynomial of α over \mathbb{Q} :

- $\alpha=\sqrt{2}+\sqrt{5}$
- $\alpha=\sqrt{3}-\sqrt[3]{3}$
- $\alpha=\lambda+i \lambda$, where $\lambda \in \mathbb{R}_{>0}, \lambda^{4}=5$.

Solution:

- Suppose that $\alpha=\sqrt{2}+\sqrt{5}$. Then we have $\alpha^{2}=7+2 \sqrt{10}$, which implies (by subtracting 7 from both sides and squaring them) $\alpha^{4}-14 \alpha^{2}+49=40$, so that α satisfies the polynomial $f(X)=X^{4}-14 X^{2}+9$. To prove that f is the minimal polynomial of α, we need to check that it is irreducible over \mathbb{Q}. Notice that the complex roots of f are $\pm \alpha$ and $\pm(\sqrt{2}-\sqrt{5})$ so that there is no linear factor in the decomposition of f. The only remaining possibility for f not to be irreducible would be that it factors into two rational polynomials of degree 2 , in which case one of two factors would be $(X-\alpha)(X-\beta) \in \mathbb{Q}[X]$ for β equal to one of the remaining roots. It can be easily checked that none of those polynomials have rational coefficients, contradiction. Hence $f(X)=X^{4}-14 X^{2}+9$ is the minimal polynomial of $\alpha=\sqrt{2}+\sqrt{5}$.
- Suppose that $\alpha=\sqrt{3}-\sqrt[3]{3}$. Then $(\alpha-\sqrt{3})^{3}=(-\sqrt[3]{3})^{3}$, i.e., $\alpha^{3}+9 \alpha+3=$ $\sqrt{3}\left(3 \alpha^{2}+3\right)$, which implies, by squaring both sides,

$$
\begin{aligned}
& \alpha^{6}+81 \alpha^{2}+9+18 \alpha^{4}+6 \alpha^{3}+54 \alpha=27\left(\alpha^{4}+2 \alpha^{2}+1\right) \Longleftrightarrow \\
& \alpha^{6}-9 \alpha^{4}+6 \alpha^{3}+27 \alpha^{2}+54 \alpha-18=0 .
\end{aligned}
$$

Then α is a root of $f(X)=X^{6}-9 X^{4}+6 X^{3}+27 X^{2}+54 X-18$ and we claim this polynomial is irreducible. This is true if and only if $[\mathbb{Q}(\alpha): \mathbb{Q}]=6$. Notice that $\alpha \in \mathbb{Q}(\sqrt[6]{3})$, which is a degree- 6 extension of \mathbb{Q} (because the polynomial $X^{6}-3$ is irreducible in $\mathbb{Q}[X]$ by Eisenstein Criterion and Gauss's Lemma below). Hence f is irreducible if and only if $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt[6]{3})$, which is true if and only if $\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}\right)$ are generators for $\mathbb{Q}(\sqrt[6]{3})$. Denote $\beta=\sqrt[6]{3}$, so that $\alpha=$ $\beta^{3}-\beta^{2}=\beta^{2}(\beta-1)$. Then we have

$$
\begin{aligned}
& \alpha^{2}=3+\beta^{4}-2 \beta^{5}, \\
& \alpha^{3}=3(\beta-1)^{3}=-3+9 \beta-9 \beta^{2}+3 \beta^{3} \\
& \alpha^{4}=3 \beta^{2}(\beta-1)^{4}=9+3 \beta^{2}-12 \beta^{3}+18 \beta^{4}-12 \beta^{5} \\
& \alpha^{5}=3 \beta^{4}(\beta-1)^{5}=-90+90 \beta-45 \beta^{2}+9 \beta^{3}-3 \beta^{4}+15 \beta^{5},
\end{aligned}
$$

which can be written in matrix notation as

$$
\left(\begin{array}{c}
1 \\
\alpha \\
\alpha^{2} \\
\alpha^{3} \\
\alpha^{4} \\
\alpha^{5}
\end{array}\right)=\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
3 & 0 & 0 & 0 & 1 & -2 \\
-3 & 9 & -9 & 3 & 0 & 0 \\
9 & 0 & 3 & -12 & 18 & -12 \\
-90 & 90 & -45 & 9 & -3 & 15
\end{array}\right)\left(\begin{array}{c}
1 \\
\beta \\
\beta^{2} \\
\beta^{3} \\
\beta^{4} \\
\beta^{5}
\end{array}\right) .
$$

Since the determinant of the square matrix can be computed to be $-3^{4} \cdot 73$, it is invertible, making $\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}\right)$ a \mathbb{Q}-basis for $\mathbb{Q}(\beta)$, so that $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)$ and $f(X)=X^{6}-9 X^{4}+6 X^{3}+27 X^{2}+54 X-18$ is the minimal polynomial of α.

- Suppose that $\alpha=\lambda+i \lambda$, with $\lambda=\sqrt[4]{5}$. Then $\alpha=\lambda \sqrt{2} e^{i \pi / 4}$ and $\alpha^{4}=5 \cdot 4 \cdot e^{i \pi}=$ -20 and α is a root of $f(X)=X^{4}+20$. This is a polynomial with integer coefficients which is irreducible in $\mathbb{Z}[X]$ by Eisenstein's Criterion (Exercise 2.3 from Exercise sheet 9). As it is monic, it has coprime coefficients, so that it is also irreducible in $\mathbb{Q}[X]$ by Gauss's Lemma (see below). Then $f(X)=X^{4}+20$ is the minimal polynomial of α.

We say that a polynomial $f \in \mathbb{Z}[X]$ is primitive if the coefficients of f are coprime.
Gauss's Lemma. The product of two primitive polynomials in $\mathbb{Z}[X]$ is a primitive polynomial. If $f(X) \in \mathbb{Z}[X]$ is primitive, then it is irreducible in $\mathbb{Z}[X]$ if and only if it is irreducible in $\mathbb{Q}[X]$.

Proof: For the first part of the statement, notice that a polynomial $f \in \mathbb{Z}[X]$ is primitive if and only if for every prime p one has $0 \neq \bar{f} \in \mathbb{Z} / p \mathbb{Z}[X]$ (via the reduction map $\mathbb{Z}[X] \rightarrow \mathbb{Z} / p \mathbb{Z}$ from Exercise 2.1 in Exercise sheet 9). Then if f and g are primitive, the reduction modulo each p of $f g$, which is $\bar{f} \cdot \bar{g}$, cannot be zero, as $\mathbb{Z} / p \mathbb{Z}[X]$ is an integral domain and $\bar{f}, \bar{g} \neq 0$. Hence $f g$ is primitive.

For the second part, it is easy to see that when $f \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Q}[X]$, then so is in $\mathbb{Z}[X]$, because if $f=g h$ is a non-trivial factorization in $\mathbb{Z}[X]$ (that is, $g, h \notin \mathbb{Z}[X]^{\times}$), then g and h are non-constant (as f is primitive), so that $f=g h$ is also a non-trivial factorization in $\mathbb{Q}[X]$.

Conversely, assume that f is irreducible in $\mathbb{Z}[X]$, and that $f=g h$ is a factorization in $\mathbb{Q}[X]$. Let $n=\operatorname{deg}(f), d=\operatorname{deg}(g)$ and $e=\operatorname{deg}(h)$. Computing common denominators and putting together common factors of the resulting numerator, one can find $\gamma, \tau \in \mathbb{Q}$ and primitive polynomials $\tilde{g}, \tilde{h} \in \mathbb{Z}[X]$ such that $g=\gamma \tilde{g}$ and $h=\tau \tilde{h}$. Then $f=\gamma \tau \tilde{g} \tilde{h}$. Since $\tilde{g} \tilde{h}$ is primitive by previous part, we get $\gamma \tau \in \mathbb{Z}$ (actually, $\gamma \tau= \pm 1$, as f is also primitive).
2. Suppose that the field extension $L=K(\alpha)$ over K is finite of odd degree. Prove: $L=K\left(\alpha^{2}\right)$.

Solution:

Of course, one has $K \subseteq K\left(\alpha^{2}\right) \subseteq K(\alpha)=L$, and by multiplicativity of degrees in towers, we have $[L: K]=\left[L: K\left(\alpha^{2}\right)\right]\left[K\left(\alpha^{2}\right), K\right]$, and since $[L: K]$ is odd by hypothesis, we get that $\left[L: K\left(\alpha^{2}\right)\right]$ is also odd. Moreover, α satisfies the polynomial $f(X)=X^{2}-\alpha^{2} \in K\left(\alpha^{2}\right)$, so that $\left[L: K\left(\alpha^{2}\right)\right] \leq 2$. This degree can then only be equal to 1 , which implies $L=K\left(\alpha^{2}\right)$.
3. (*) (Trace and norm for finite field extensions) Let L over K be a finite field extension.

1. For $x \in L$, show that the following is a K-linear map:

$$
\begin{aligned}
m_{x}: L & \rightarrow L \\
y & \mapsto x y
\end{aligned}
$$

When $K=\mathbb{R}, L=\mathbb{C}$ and $\alpha \in \mathbb{C}$, compute the matrix representing m_{α} with respect to the basis $(1, i)$.
2. Show that we have an injective ring homomorphism

$$
\begin{aligned}
r_{L / K}: L & \rightarrow \operatorname{End}_{K}(L) \\
x & \mapsto m_{x}
\end{aligned}
$$

3. Consider the maps

$$
\begin{aligned}
\operatorname{Tr}_{L / K}: L & \rightarrow K \\
x & \mapsto \operatorname{Tr}\left(m_{x}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{N}_{L / K}: L & \rightarrow K \\
x & \mapsto \operatorname{det}\left(m_{x}\right)
\end{aligned}
$$

Prove:

- $\operatorname{Tr}_{L / K}$ is K-linear
- $\mathrm{N}_{L / K}(x y)=\mathrm{N}_{L / K}(x) \mathrm{N}_{L / K}(y)$ for every $x, y \in L$, and $\mathrm{N}_{L / K}(x)=0$ if and only if $x=0$.

4. Given a tower of finite extensions $L_{1} / L_{2} / K$, show that

$$
\operatorname{Tr}_{L_{1} / K}=\operatorname{Tr}_{L_{2} / K} \circ \operatorname{Tr}_{L_{1} / L_{2}}
$$

[Hint: Get a K-basis for L_{1} starting from a K-basis for L_{2} and an L_{2}-basis for L_{1}, then evaluate the right hand side on $\left.\alpha \in L_{1}\right]$.
5. Prove that if $x \in L$ is such that $L=K(x)$, and

$$
\operatorname{Irr}(x, K)(X)=X^{d}+a_{d-1} X^{d-1}+\cdots+a_{1} X+a_{0} \in K[X]
$$

then $\operatorname{Tr}_{L / K}(x)=-a_{d-1}$ and $\mathrm{N}_{L / K}(x)=(-1)^{d} a_{0} . \quad\left[\right.$ Hint: $\quad\left(1, x, \ldots, x^{d-1}\right)$ is a K-basis of L.]
6. Let p be an odd prime number, $\zeta_{p}=e^{\frac{2 \pi i}{p}}$ and $K_{p}=\mathbb{Q}\left(\zeta_{p}\right)$. Find $\operatorname{Irr}\left(\zeta_{p}, \mathbb{Q}\right)$, $\operatorname{Tr}_{K_{p} / \mathbb{Q}}\left(\zeta_{p}\right), \mathrm{N}_{K_{p} / \mathbb{Q}}\left(\zeta_{p}\right)$ and $\mathrm{N}_{K_{p} / \mathbb{Q}}\left(\zeta_{p}-1\right)$. [Hint: Look at Exercise 2.4 from Exercise sheet 9 . Use previous point, and notice that $\mathbb{Q}\left(\zeta_{p}\right)=\mathbb{Q}\left(\zeta_{p}-1\right)$.]

Solution:

1. It is immediate to check K-linearity of each map m_{x}. Indeed, m_{x} is additive by distributivity of the multiplication with respect to addition, and it respect scalar multiplication by commutativity of the multiplication in L.
For $K=\mathbb{R}, L=\mathbb{C}$ and $\alpha=a+i b \in \mathbb{C}$ (with $a, b \in \mathbb{R}$), we have $m_{\alpha}(1)=\alpha=a+i b$, while $m_{\alpha}(i)=-b+i a$, so that m_{α} is represented by the matrix

$$
M_{\alpha}=\left(\begin{array}{rr}
a & -b \\
b & a
\end{array}\right) .
$$

2. We immediately notice that $m_{0}=0$ and $m_{1}=\operatorname{id}_{L}$. For $x, y, z \in L$, we have $m_{x+y}(z)=(x+y) z=x z+y z=m_{x}(z)+m_{y}(z)$ and $m_{x y}(z)=(x y) z=x(y z)=$ $m_{x}\left(m_{y}(z)\right)=\left(m_{x} \circ m_{y}\right)(z)$. This means that $r_{L / K}$ respects both sum and multiplication, and we can conclude that it is a ring homomorphism. As $r_{L / K}$ is not the zero map (since it sends $1 \mapsto i d_{L} \neq 0$) and L is a field, the kernel is equal to (0), so that $r_{L / K}$ is injective.
3. First, we prove linearity of $\operatorname{Tr}_{L / K}$. Let $n=[L: K]$ and fix a K-basis \mathcal{B} for L. Then by basic linear algebra we have a K-linear ring isomorphism $\varphi: \operatorname{End}_{K}(L) \rightarrow$ $M_{n}(K)$. Also, the trace map $\operatorname{tr}: M_{n}(K) \rightarrow K$ is easily seen to be K-linear. Then by construction we have that $\operatorname{Tr}_{L / K}=\operatorname{tr} \circ \varphi \circ r_{L / K}$, which is K-linear as it is a composition of K-linear maps.
As concerns norm, we have $\mathrm{N}_{L / K}=\operatorname{det} \circ \varphi \circ r_{L / K}$. Since all the composed maps respect multiplication, so does $\mathrm{N}_{L / K}$. Moreover, we have $\mathrm{N}_{L / K}(x)=0$ if and only if $\operatorname{det}\left(m_{x}\right)=0$, which is equivalent to saying that m_{x} is not an invertible endomorphism, and this happens precisely when $x=0$ (since for $x \neq 0$, me have $\left.m_{x^{-1}}=m_{x}^{-1}\right)$.
4. Let $\mathcal{B}_{1}=\left(e_{1}, \ldots, e_{k}\right)$ be an L_{2}-basis for L_{1}, and $\mathcal{B}_{2}=\left(f_{1}, \ldots, f_{l}\right)$ be an K-basis for L_{2}. As seen in class, $\mathcal{B}:=\left(e_{1} f_{1}, e_{1} f_{2}, \ldots, e_{1} f_{l}, e_{2} f_{1}, \ldots, e_{2} f_{l}, \ldots, e_{k} f_{1}, \ldots, e_{k} f_{l}\right)$ is a K-basis for L_{1}.
For $\alpha \in L_{1}$, we can find coefficients $\lambda_{i j} \in L_{2}$, with $1 \leq i, j \leq k$, so that for each i one has

$$
\alpha \cdot e_{i}=\sum_{j=1}^{k} \lambda_{i j} e_{j} .
$$

Then for each i, j as above and $1 \leq s, t \leq l$ we can find coefficients $\mu_{i j s t} \in L_{2}$ such that for each i, j and s one has

$$
\lambda_{i j} \cdot f_{s}=\sum_{t=1}^{l} \mu_{i j s t} f_{t} .
$$

Putting those two equalities together we get, for each i and t as above,

$$
\alpha \cdot e_{i} f_{s}=\sum_{j=1}^{k} \sum_{t=1}^{l} \mu_{i j s t} e_{j} f_{t}
$$

Then the matrix correspondent to m_{α} as a L_{2}-linear map of L_{1}, with respect to the basis \mathcal{B}_{1}, is

$$
\left[m_{\alpha}\right]_{L_{1} / L_{2}}={ }^{T}\left(\lambda_{i j}\right)_{i, j},
$$

so that $\operatorname{Tr}_{L_{1} / L_{2}}(\alpha)=\sum_{i=1}^{k} \lambda_{i i}$. Moreover, the matrix correspondent to m_{α} as a K-linear map of L_{1}, with respect to the basis \mathcal{B}, is

$$
\left[m_{\alpha}\right]_{L_{1} / K}={ }^{T}\left(\mu_{i j s t}\right)_{(i, s),(j, t)},
$$

where the row index is the couple (i, s) and the column index is the couple (j, t), and row (column) indexes are ordered with lexicographical order, so that $\operatorname{Tr}_{L_{1} / K}(\alpha)=\sum_{i=1}^{k} \sum_{s=1}^{l} \mu_{i i s s}$.
Furthermore, for each i, j as before, the matrix correspondent to $m_{\lambda_{i, j}}$ as a $K-$ linear map of L_{2}, with respect to the basis \mathcal{B}_{2}, is

$$
\left[m_{\lambda_{i, j}}\right]_{L_{2} / K}={ }^{T}\left(\mu_{i j s t}\right)_{s, t},
$$

so that $\operatorname{Tr}_{L_{2} / K}\left(\lambda_{i j}\right)=\sum_{s=1}^{l} \mu_{i j s s}$.
In conclusion, we have
$\operatorname{Tr}_{L_{2} / K}\left(\operatorname{Tr}_{L_{1} / L_{2}}(\alpha)\right)=\operatorname{Tr}_{L_{2} / K}\left(\sum_{i=1}^{k} \lambda_{i i}\right)=\sum_{i=1}^{k} \operatorname{Tr}_{L_{2} / K}\left(\lambda_{i i}\right)=\sum_{i=1}^{k} \sum_{s=1}^{l} \mu_{i i s s}=\operatorname{Tr}_{L_{1} / K}(\alpha)$.
5. We have that $L \cong K[X] /(P(X))$ as field extensions of K, and that $\left(1, x, \ldots, x^{d-1}\right)$ is a K-basis for L. Then we are interested in the matrix $M_{x}=\left(\lambda_{i j}\right)_{0 \leq i, j \leq d-1}$ associated to m_{x}. For $j=0, \ldots, d-2$, we have $x \cdot x^{j}=x^{j+1}$ so that we have

$$
\lambda_{i j}=\left\{\begin{array}{ll}
1 & \text { if } i=j+1 \\
0 & \text { else. }
\end{array}, \text { for } j=0, \ldots, d-2 .\right.
$$

Moreover, $x \cdot x^{d-1}=x^{d}=-a_{0}-a_{1} x-\cdots-a_{d-1} x^{d-1}$, so that

$$
\lambda_{i,(d-1)}=-a_{i} .
$$

What we have found is

$$
M_{x}=\left(\begin{array}{rrrrr}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & -a_{d-2} \\
0 & \ldots & 0 & 1 & -a_{d-1}
\end{array}\right) .
$$

Then we get $\operatorname{Tr}_{L / K}(x)=\operatorname{tr}\left(M_{x}\right)=-a_{d-1}$, and using Legendre form for the determinant on the first row we also obtain $\mathrm{N}_{L / K}(x)=\operatorname{det}\left(M_{x}\right)=(-1)^{d} a_{0}$.
6. Using the solution of Exercise 2.4 from Exercise sheet $9, \zeta_{p}$ satisfies the cyclotomic polynomial $\varphi_{p}(X)=X^{p-1}+\cdots+X+1 \in \mathbb{Z}[X]$, which is irreducible in $\mathbb{Z}[X]$. Since φ_{p} is a primitive polynomial, it is also irreducible in $\mathbb{Q}[X]$ by Gauss Lemma, so that $\operatorname{Irr}\left(\zeta_{p}, \mathbb{Q}\right)=\varphi_{p}$. Then by previous point we have $\operatorname{Tr}_{K_{p} / \mathbb{Q}}\left(\zeta_{p}\right)=-1$ and $\mathrm{N}_{K_{p} / \mathbb{Q}}\left(\zeta_{p}\right)=1$ as p is odd.
Notice that we have $\mathbb{Q}\left(\zeta_{p}\right)=\mathbb{Q}\left(\zeta_{p}-1\right)$, so that $\operatorname{Irr}\left(\zeta_{p}-1, \mathbb{Q}\right.$ has degree $p-1$. Since $\zeta_{p}-1$ satisfies $G(X):=\varphi_{p}(X+1)$ which is irreducible of degree $p-1$, we get

$$
\operatorname{Irr}\left(\zeta_{p}-1, \mathbb{Q}\right)=\varphi_{p}(X+1)=\frac{(X+1)^{p}-1}{X}
$$

whose constant coefficient is easily seen to be equal to p, so that $N_{L / K}\left(\zeta_{p}-1\right)=p$.
4. Prove that for every algebraic field extension K / \mathbb{R} we have that K is isomorphic either to \mathbb{R} or to \mathbb{C}.

Solution:

Given a field k and an algebraic closure \bar{k} of k, we have that for every algebraic extension K / k, the field K is isomorphic (with an isomorphism fixing k) to a field $K^{\prime} \subseteq \bar{k}$. Indeed, fixing an algebraic closure \bar{K} of K, we have that \bar{K} is an algebraic closure of k.

Then by uniqueness of the algebraic closure there exists an isomorphism $\varphi: \bar{K} \rightarrow \bar{k}$ fixing k, so that $K \cong K^{\prime}:=\varphi(K) \subseteq \bar{k}$.

Applying this with $k=\mathbb{R}$ and K as in the exercise, we have that K is isomorphic over \mathbb{R} to a field K^{\prime} such that $\mathbb{R} \subseteq K^{\prime} \subseteq \mathbb{C}$. As $\mathbb{C}=\mathbb{R} \oplus i \mathbb{R}$, we have $[\mathbb{C}: \mathbb{R}]=2$, and the field extensions K^{\prime} / \mathbb{R} and \mathbb{C} / K^{\prime} are finite. By multiplicativity of the degree in towers of extensions, we have $\left[\mathbb{C}: K^{\prime}\right]\left[K^{\prime}: \mathbb{R}\right]=[\mathbb{C}: \mathbb{R}]=2$ and there are only 2 possibilities, in both of which the thesis is immediate:

- $\left[\mathbb{C}: K^{\prime}\right]=1$ and $\left[K^{\prime}: \mathbb{R}\right]=2$. Then $\mathbb{C} \cong K^{\prime} \cong K$;
- $\left[\mathbb{C}: K^{\prime}\right]=2$ and $\left[K^{\prime}: \mathbb{R}\right]=1$. Then $\mathbb{R} \cong K^{\prime} \cong K$.

