D-MATH Prof. Emmanuel Kowalski Algebra I

Solutions of exercise sheet 11

The content of the marked exercises (*) should be known for the exam.

- **1.** For the following values of $\alpha \in \mathbb{C}$, find the minimal polynomial of α over \mathbb{Q} :
 - $\alpha = \sqrt{2} + \sqrt{5}$
 - $\alpha = \sqrt{3} \sqrt[3]{3}$
 - $\alpha = \lambda + i\lambda$, where $\lambda \in \mathbb{R}_{>0}$, $\lambda^4 = 5$.

Solution:

• Suppose that $\alpha = \sqrt{2} + \sqrt{5}$. Then we have $\alpha^2 = 7 + 2\sqrt{10}$, which implies (by subtracting 7 from both sides and squaring them) $\alpha^4 - 14\alpha^2 + 49 = 40$, so that α satisfies the polynomial $f(X) = X^4 - 14X^2 + 9$. To prove that f is the minimal polynomial of α , we need to check that it is irreducible over \mathbb{Q} . Notice that the complex roots of f are $\pm \alpha$ and $\pm(\sqrt{2} - \sqrt{5})$ so that there is no linear factor in the decomposition of f. The only remaining possibility for f not to be irreducible would be that it factors into two rational polynomials of degree 2, in which case one of two factors would be $(X - \alpha)(X - \beta) \in \mathbb{Q}[X]$ for β equal to one of the remaining roots. It can be easily checked that none of those polynomials have rational coefficients, contradiction. Hence $f(X) = X^4 - 14X^2 + 9$ is the minimal polynomial of $\alpha = \sqrt{2} + \sqrt{5}$.

• Suppose that $\alpha = \sqrt{3} - \sqrt[3]{3}$. Then $(\alpha - \sqrt{3})^3 = (-\sqrt[3]{3})^3$, i.e., $\alpha^3 + 9\alpha + 3 = \sqrt{3}(3\alpha^2 + 3)$, which implies, by squaring both sides,

$$\begin{aligned} \alpha^{6} + 81\alpha^{2} + 9 + 18\alpha^{4} + 6\alpha^{3} + 54\alpha &= 27(\alpha^{4} + 2\alpha^{2} + 1) \iff \\ \alpha^{6} - 9\alpha^{4} + 6\alpha^{3} + 27\alpha^{2} + 54\alpha - 18 &= 0. \end{aligned}$$

Then α is a root of $f(X) = X^6 - 9X^4 + 6X^3 + 27X^2 + 54X - 18$ and we claim this polynomial is irreducible. This is true if and only if $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 6$. Notice that $\alpha \in \mathbb{Q}(\sqrt[6]{3})$, which is a degree-6 extension of \mathbb{Q} (because the polynomial $X^6 - 3$ is irreducible in $\mathbb{Q}[X]$ by Eisenstein Criterion and Gauss's Lemma below). Hence f is irreducible if and only if $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt[6]{3})$, which is true if and only if $(1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5)$ are generators for $\mathbb{Q}(\sqrt[6]{3})$. Denote $\beta = \sqrt[6]{3}$, so that $\alpha = \beta^3 - \beta^2 = \beta^2(\beta - 1)$. Then we have

$$\begin{aligned} \alpha^2 &= 3 + \beta^4 - 2\beta^5, \\ \alpha^3 &= 3(\beta - 1)^3 = -3 + 9\beta - 9\beta^2 + 3\beta^3 \\ \alpha^4 &= 3\beta^2(\beta - 1)^4 = 9 + 3\beta^2 - 12\beta^3 + 18\beta^4 - 12\beta^5 \\ \alpha^5 &= 3\beta^4(\beta - 1)^5 = -90 + 90\beta - 45\beta^2 + 9\beta^3 - 3\beta^4 + 15\beta^5, \end{aligned}$$

Please turn over!

which can be written in matrix notation as

$$\begin{pmatrix} 1\\ \alpha\\ \alpha^2\\ \alpha^3\\ \alpha^4\\ \alpha^5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & -1 & 1 & 0 & 0\\ 3 & 0 & 0 & 0 & 1 & -2\\ -3 & 9 & -9 & 3 & 0 & 0\\ 9 & 0 & 3 & -12 & 18 & -12\\ -90 & 90 & -45 & 9 & -3 & 15 \end{pmatrix} \begin{pmatrix} 1\\ \beta\\ \beta^2\\ \beta^3\\ \beta^4\\ \beta^5 \end{pmatrix}.$$

Since the determinant of the square matrix can be computed to be $-3^4 \cdot 73$, it is invertible, making $(1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5)$ a Q-basis for $\mathbb{Q}(\beta)$, so that $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$ and $f(X) = X^6 - 9X^4 + 6X^3 + 27X^2 + 54X - 18$ is the minimal polynomial of α .

• Suppose that $\alpha = \lambda + i\lambda$, with $\lambda = \sqrt[4]{5}$. Then $\alpha = \lambda\sqrt{2}e^{i\pi/4}$ and $\alpha^4 = 5 \cdot 4 \cdot e^{i\pi} = -20$ and α is a root of $f(X) = X^4 + 20$. This is a polynomial with integer coefficients which is irreducible in $\mathbb{Z}[X]$ by Eisenstein's Criterion (Exercise 2.3 from Exercise sheet 9). As it is monic, it has coprime coefficients, so that it is also irreducible in $\mathbb{Q}[X]$ by Gauss's Lemma (see below). Then $f(X) = X^4 + 20$ is the minimal polynomial of α .

We say that a polynomial $f \in \mathbb{Z}[X]$ is *primitive* if the coefficients of f are coprime.

Gauss's Lemma. The product of two primitive polynomials in $\mathbb{Z}[X]$ is a primitive polynomial. If $f(X) \in \mathbb{Z}[X]$ is primitive, then it is irreducible in $\mathbb{Z}[X]$ if and only if it is irreducible in $\mathbb{Q}[X]$.

Proof: For the first part of the statement, notice that a polynomial $f \in \mathbb{Z}[X]$ is primitive if and only if for every prime p one has $0 \neq \overline{f} \in \mathbb{Z}/p\mathbb{Z}[X]$ (via the reduction map $\mathbb{Z}[X] \to \mathbb{Z}/p\mathbb{Z}$ from Exercise 2.1 in Exercise sheet 9). Then if f and g are primitive, the reduction modulo each p of fg, which is $\overline{f} \cdot \overline{g}$, cannot be zero, as $\mathbb{Z}/p\mathbb{Z}[X]$ is an integral domain and $\overline{f}, \overline{g} \neq 0$. Hence fg is primitive.

For the second part, it is easy to see that when $f \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Q}[X]$, then so is in $\mathbb{Z}[X]$, because if f = gh is a non-trivial factorization in $\mathbb{Z}[X]$ (that is, $g,h \notin \mathbb{Z}[X]^{\times}$), then g and h are non-constant (as f is primitive), so that f = gh is also a non-trivial factorization in $\mathbb{Q}[X]$.

Conversely, assume that f is irreducible in $\mathbb{Z}[X]$, and that f = gh is a factorization in $\mathbb{Q}[X]$. Let $n = \deg(f)$, $d = \deg(g)$ and $e = \deg(h)$. Computing common denominators and putting together common factors of the resulting numerator, one can find $\gamma, \tau \in \mathbb{Q}$ and primitive polynomials $\tilde{g}, \tilde{h} \in \mathbb{Z}[X]$ such that $g = \gamma \tilde{g}$ and $h = \tau \tilde{h}$. Then $f = \gamma \tau \tilde{g} \tilde{h}$. Since $\tilde{g}\tilde{h}$ is primitive by previous part, we get $\gamma \tau \in \mathbb{Z}$ (actually, $\gamma \tau = \pm 1$, as f is also primitive).

2. Suppose that the field extension $L = K(\alpha)$ over K is finite of odd degree. Prove: $L = K(\alpha^2)$.

Solution:

Of course, one has $K \subseteq K(\alpha^2) \subseteq K(\alpha) = L$, and by multiplicativity of degrees in towers, we have $[L : K] = [L : K(\alpha^2)][K(\alpha^2), K]$, and since [L : K] is odd by hypothesis, we get that $[L : K(\alpha^2)]$ is also odd. Moreover, α satisfies the polynomial $f(X) = X^2 - \alpha^2 \in K(\alpha^2)$, so that $[L : K(\alpha^2)] \leq 2$. This degree can then only be equal to 1, which implies $L = K(\alpha^2)$.

- **3.** (*) (Trace and norm for finite field extensions) Let *L* over *K* be a finite field extension.
 - 1. For $x \in L$, show that the following is a K-linear map:

$$m_x: L \to L$$
$$y \mapsto xy.$$

When $K = \mathbb{R}$, $L = \mathbb{C}$ and $\alpha \in \mathbb{C}$, compute the matrix representing m_{α} with respect to the basis (1, i).

2. Show that we have an injective ring homomorphism

$$r_{L/K}: L \to \operatorname{End}_K(L)$$
$$x \mapsto m_x.$$

3. Consider the maps

$$\operatorname{Tr}_{L/K} : L \to K$$
 (trace map)
 $x \mapsto \operatorname{Tr}(m_x)$

and

$$\begin{split} \mathbf{N}_{L/K} &: L \to K & \text{(norm map)} \\ & x \mapsto \det(m_x). \end{split}$$

Prove:

- $\operatorname{Tr}_{L/K}$ is K-linear
- $N_{L/K}(xy) = N_{L/K}(x)N_{L/K}(y)$ for every $x, y \in L$, and $N_{L/K}(x) = 0$ if and only if x = 0.
- 4. Given a tower of finite extensions $L_1/L_2/K$, show that

$$\operatorname{Tr}_{L_1/K} = \operatorname{Tr}_{L_2/K} \circ \operatorname{Tr}_{L_1/L_2}.$$

[*Hint*: Get a K-basis for L_1 starting from a K-basis for L_2 and an L_2 -basis for L_1 , then evaluate the right hand side on $\alpha \in L_1$].

5. Prove that if $x \in L$ is such that L = K(x), and

$$Irr(x,K)(X) = X^{d} + a_{d-1}X^{d-1} + \dots + a_{1}X + a_{0} \in K[X]$$

then $\operatorname{Tr}_{L/K}(x) = -a_{d-1}$ and $\operatorname{N}_{L/K}(x) = (-1)^d a_0$. [*Hint:* $(1, x, \dots, x^{d-1})$ is a *K*-basis of *L*.]

Please turn over!

6. Let p be an odd prime number, $\zeta_p = e^{\frac{2\pi i}{p}}$ and $K_p = \mathbb{Q}(\zeta_p)$. Find $\operatorname{Irr}(\zeta_p, \mathbb{Q})$, $\operatorname{Tr}_{K_p/\mathbb{Q}}(\zeta_p)$, $\operatorname{N}_{K_p/\mathbb{Q}}(\zeta_p)$ and $\operatorname{N}_{K_p/\mathbb{Q}}(\zeta_p - 1)$. [*Hint:* Look at Exercise 2.4 from Exercise sheet 9. Use previous point, and notice that $\mathbb{Q}(\zeta_p) = \mathbb{Q}(\zeta_p - 1)$.]

Solution:

1. It is immediate to check K-linearity of each map m_x . Indeed, m_x is additive by distributivity of the multiplication with respect to addition, and it respect scalar multiplication by commutativity of the multiplication in L.

For $K = \mathbb{R}$, $L = \mathbb{C}$ and $\alpha = a + ib \in \mathbb{C}$ (with $a, b \in \mathbb{R}$), we have $m_{\alpha}(1) = \alpha = a + ib$, while $m_{\alpha}(i) = -b + ia$, so that m_{α} is represented by the matrix

$$M_{\alpha} = \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right).$$

- 2. We immediately notice that $m_0 = 0$ and $m_1 = \operatorname{id}_L$. For $x, y, z \in L$, we have $m_{x+y}(z) = (x+y)z = xz + yz = m_x(z) + m_y(z)$ and $m_{xy}(z) = (xy)z = x(yz) = m_x(m_y(z)) = (m_x \circ m_y)(z)$. This means that $r_{L/K}$ respects both sum and multiplication, and we can conclude that it is a ring homomorphism. As $r_{L/K}$ is not the zero map (since it sends $1 \mapsto id_L \neq 0$) and L is a field, the kernel is equal to (0), so that $r_{L/K}$ is injective.
- 3. First, we prove linearity of $\operatorname{Tr}_{L/K}$. Let n = [L : K] and fix a K-basis \mathcal{B} for L. Then by basic linear algebra we have a K-linear ring isomorphism $\varphi : \operatorname{End}_K(L) \to M_n(K)$. Also, the trace map $\operatorname{tr} : M_n(K) \to K$ is easily seen to be K-linear. Then by construction we have that $\operatorname{Tr}_{L/K} = \operatorname{tr} \circ \varphi \circ r_{L/K}$, which is K-linear as it is a composition of K-linear maps.

As concerns norm, we have $N_{L/K} = \det \circ \varphi \circ r_{L/K}$. Since all the composed maps respect multiplication, so does $N_{L/K}$. Moreover, we have $N_{L/K}(x) = 0$ if and only if $\det(m_x) = 0$, which is equivalent to saying that m_x is not an invertible endomorphism, and this happens precisely when x = 0 (since for $x \neq 0$, me have $m_{x^{-1}} = m_x^{-1}$).

4. Let $\mathcal{B}_1 = (e_1, \ldots, e_k)$ be an L_2 -basis for L_1 , and $\mathcal{B}_2 = (f_1, \ldots, f_l)$ be an K-basis for L_2 . As seen in class, $\mathcal{B} := (e_1f_1, e_1f_2, \ldots, e_1f_l, e_2f_1, \ldots, e_2f_l, \ldots, e_kf_1, \ldots, e_kf_l)$ is a K-basis for L_1 .

For $\alpha \in L_1$, we can find coefficients $\lambda_{ij} \in L_2$, with $1 \leq i, j \leq k$, so that for each *i* one has

$$\alpha \cdot e_i = \sum_{j=1}^k \lambda_{ij} e_j.$$

Then for each i, j as above and $1 \le s, t \le l$ we can find coefficients $\mu_{ijst} \in L_2$ such that for each i, j and s one has

$$\lambda_{ij} \cdot f_s = \sum_{t=1}^l \mu_{ijst} f_t.$$

See next page!

Putting those two equalities together we get, for each i and t as above,

$$\alpha \cdot e_i f_s = \sum_{j=1}^k \sum_{t=1}^l \mu_{ijst} e_j f_t$$

Then the matrix correspondent to m_{α} as a L_2 -linear map of L_1 , with respect to the basis \mathcal{B}_1 , is

$$[m_{\alpha}]_{L_1/L_2} = {}^T (\lambda_{ij})_{i,j},$$

so that $\operatorname{Tr}_{L_1/L_2}(\alpha) = \sum_{i=1}^k \lambda_{ii}$. Moreover, the matrix correspondent to m_{α} as a K-linear map of L_1 , with respect to the basis \mathcal{B} , is

$$[m_{\alpha}]_{L_1/K} = {}^T (\mu_{ijst})_{(i,s),(j,t)},$$

where the row index is the couple (i, s) and the column index is the couple (j, t), and row (column) indexes are ordered with lexicographical order, so that $\operatorname{Tr}_{L_1/K}(\alpha) = \sum_{i=1}^k \sum_{s=1}^l \mu_{iiss}$.

Furthermore, for each i, j as before, the matrix correspondent to $m_{\lambda_{i,j}}$ as a K-linear map of L_2 , with respect to the basis \mathcal{B}_2 , is

$$[m_{\lambda_{i,j}}]_{L_2/K} = {}^T (\mu_{ijst})_{s,t},$$

so that $\operatorname{Tr}_{L_2/K}(\lambda_{ij}) = \sum_{s=1}^{l} \mu_{ijss}$. In conclusion, we have

$$\operatorname{Tr}_{L_2/K}(\operatorname{Tr}_{L_1/L_2}(\alpha)) = \operatorname{Tr}_{L_2/K}(\sum_{i=1}^k \lambda_{ii}) = \sum_{i=1}^k \operatorname{Tr}_{L_2/K}(\lambda_{ii}) = \sum_{i=1}^k \sum_{s=1}^l \mu_{iiss} = \operatorname{Tr}_{L_1/K}(\alpha)$$

5. We have that $L \cong K[X]/(P(X))$ as field extensions of K, and that $(1, x, \ldots, x^{d-1})$ is a K-basis for L. Then we are interested in the matrix $M_x = (\lambda_{ij})_{0 \le i,j \le d-1}$ associated to m_x . For $j = 0, \ldots, d-2$, we have $x \cdot x^j = x^{j+1}$ so that we have

$$\lambda_{ij} = \begin{cases} 1 & \text{if } i = j+1 \\ 0 & \text{else.} \end{cases}, \text{ for } j = 0, \dots, d-2$$

Moreover, $x \cdot x^{d-1} = x^d = -a_0 - a_1 x - \dots - a_{d-1} x^{d-1}$, so that

.

$$\lambda_{i,(d-1)} = -a_i.$$

What we have found is

$$M_x = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \ddots & \vdots & & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{d-2} \\ 0 & \dots & 0 & 1 & -a_{d-1} \end{pmatrix}$$

Then we get $\operatorname{Tr}_{L/K}(x) = \operatorname{tr}(M_x) = -a_{d-1}$, and using Legendre form for the determinant on the first row we also obtain $N_{L/K}(x) = \det(M_x) = (-1)^d a_0$.

6. Using the solution of Exercise 2.4 from Exercise sheet 9, ζ_p satisfies the cyclotomic polynomial $\varphi_p(X) = X^{p-1} + \cdots + X + 1 \in \mathbb{Z}[X]$, which is irreducible in $\mathbb{Z}[X]$. Since φ_p is a primitive polynomial, it is also irreducible in $\mathbb{Q}[X]$ by Gauss Lemma, so that $\operatorname{Irr}(\zeta_p, \mathbb{Q}) = \varphi_p$. Then by previous point we have $\operatorname{Tr}_{K_p/\mathbb{Q}}(\zeta_p) = -1$ and $N_{K_p/\mathbb{Q}}(\zeta_p) = 1$ as p is odd.

Notice that we have $\mathbb{Q}(\zeta_p) = \mathbb{Q}(\zeta_p - 1)$, so that $\operatorname{Irr}(\zeta_p - 1, \mathbb{Q})$ has degree p - 1. Since $\zeta_p - 1$ satisfies $G(X) := \varphi_p(X + 1)$ which is irreducible of degree p - 1, we get

$$\operatorname{Irr}(\zeta_p - 1, \mathbb{Q}) = \varphi_p(X + 1) = \frac{(X + 1)^p - 1}{X},$$

whose constant coefficient is easily seen to be equal to p, so that $N_{L/K}(\zeta_p - 1) = p$.

4. Prove that for every algebraic field extension K/\mathbb{R} we have that K is isomorphic either to \mathbb{R} or to \mathbb{C} .

Solution:

Given a field k and an algebraic closure \bar{k} of k, we have that for every algebraic extension K/k, the field K is isomorphic (with an isomorphism fixing k) to a field $K' \subseteq \bar{k}$. Indeed, fixing an algebraic closure \bar{K} of K, we have that \bar{K} is an algebraic closure of k.

Then by uniqueness of the algebraic closure there exists an isomorphism $\varphi : \overline{K} \to \overline{k}$ fixing k, so that $K \cong K' := \varphi(K) \subseteq \overline{k}$.

Applying this with $k = \mathbb{R}$ and K as in the exercise, we have that K is isomorphic over \mathbb{R} to a field K' such that $\mathbb{R} \subseteq K' \subseteq \mathbb{C}$. As $\mathbb{C} = \mathbb{R} \oplus i\mathbb{R}$, we have $[\mathbb{C} : \mathbb{R}] = 2$, and the field extensions K'/\mathbb{R} and \mathbb{C}/K' are finite. By multiplicativity of the degree in towers of extensions, we have $[\mathbb{C} : K'][K' : \mathbb{R}] = [\mathbb{C} : \mathbb{R}] = 2$ and there are only 2 possibilities, in both of which the thesis is immediate:

- $[\mathbb{C}: K'] = 1$ and $[K': \mathbb{R}] = 2$. Then $\mathbb{C} \cong K' \cong K$;
- $[\mathbb{C}: K'] = 2$ and $[K': \mathbb{R}] = 1$. Then $\mathbb{R} \cong K' \cong K$.