Exercise sheet 12

The content of the marked exercises (*) should be known for the exam.

1. (*) Let p be a prime number and n a positive integer. For each element $x \in \mathbb{F}_{p^{n}}$, we define its trace and norm over \mathbb{F}_{p} as

$$
\operatorname{Tr}(x)=\sum_{j=0}^{n-1} x^{p^{j}} \text { and } \mathrm{N}(x)=\prod_{j=0}^{n-1} x^{p^{j}} .
$$

Check the following properties:

- For each $x \in \mathbb{F}_{p^{n}}$, both $\operatorname{Tr}(x)$ and $\mathrm{N}(x)$ lie in \mathbb{F}_{p};
- The map $\operatorname{Tr}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ is $\mathbb{F}_{p^{-}}$-linear;
- The map $\mathrm{N}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ is multiplicative (i.e, $\left.\mathrm{N}(x y)=\mathrm{N}(x) \mathrm{N}(y)\right)$, and $\mathrm{N}(x)=0$ if and only if $x=0$.
[Actually, this definitions of trace and norm agree with the more general ones we gave in Exercise 3 from Exercise sheet 11].

2. For K a field and n a positive integer, we define $\mathrm{GL}_{n}(K)$ to be the multiplicative group of invertible square matrices of order n with coefficients in K. It is isomorphic to the automorphism group of the K-vector space K^{n}.
3. For K a finite field of q elements, prove that the cardinality of $\mathrm{GL}_{n}(K)$ is

$$
\left|\mathrm{GL}_{n}(K)\right|=\prod_{j=0}^{n-1}\left(q^{n}-q^{j}\right)
$$

2. For $|K|=q$ as before, and $q=p^{r}$ for some prime p and positive integer r, show that a p-Sylow subgroup of $\mathrm{GL}_{n}(K)$ is given by the group of upper triangular matrices with one on the diagonal,

$$
H_{n}(K)=\left\{\left(\begin{array}{cccc}
1 & a_{1,2} & \ldots & a_{1, n} \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & a_{n-1, n} \\
0 & \ldots & 0 & 1
\end{array}\right): a_{i, j} \in K\right\}
$$

3. Let G be a finite group and $V, W \subseteq G$ subsets such that $|V|+|W|>|G|$. Prove: $G=V W$. [Hint: For $g \in G$, the sets V and $g W^{-1}$ need to intersect.]
4. Let F be a finite field. We say that $x \in F$ is a square in F if there exists $y \in F$ such that $y^{2}=x$.
5. Suppose that $\operatorname{char}(F)=2$. Prove that every element of F is a square in F.
6. Now suppose that $\operatorname{char}(F)=p \geq 3$. Let

$$
S=\left\{\alpha \in F \mid \exists b \in F: \alpha=b^{2}\right\} \text { and } S^{\prime}=S \backslash\{0\} .
$$

Prove:

- S^{\prime} is a subgroup of index 2 of F^{\times}[Hint: the map $x \mapsto x^{2}$ of F^{\times}is not injective];
- $2 \cdot|S|>|F|$.

3. Deduce that for every finite field F, every element in F can be expressed as the sum of two squares in F. [Hint: Previous exercise.]
4. Let $F=\mathbb{F}_{p}$ with $p \geq 3$. Prove that $-1 \in \mathbb{F}_{p}$ is a square in \mathbb{F}_{p} if and only if $p \equiv 1$ $(\bmod 4)$.

Due to: 11 December 2014, 3 pm.

