Algebra I

D-MATH Prof. Emmanuel Kowalski

Solutions of exercise sheet 12

The content of the marked exercises (*) should be known for the exam.

1. (*) Let p be a prime number and n a positive integer. For each element $x \in \mathbb{F}_{p^n}$, we define its trace and norm over \mathbb{F}_p as

$$\operatorname{Tr}(x) = \sum_{j=0}^{n-1} x^{p^j}$$
 and $\operatorname{N}(x) = \prod_{j=0}^{n-1} x^{p^j}$.

Check the following properties:

- For each $x \in \mathbb{F}_{p^n}$, both $\operatorname{Tr}(x)$ and $\operatorname{N}(x)$ lie in \mathbb{F}_p ;
- The map $\operatorname{Tr} : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is \mathbb{F}_p -linear;
- The map $N : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is multiplicative (i.e, N(xy) = N(x)N(y)), and N(x) = 0 if and only if x = 0.

[Actually, these definitions of trace and norm agree with the more general ones we gave in Exercise 3 from Exercise sheet 11].

Solution:

• As seen in class, for $\alpha \in \mathbb{F}_{p^n}$, we have that $\alpha \in \mathbb{F}_p$ if and only if $\alpha^p = \alpha$. Hence we only need to show that the trace and the norm of $x \in \mathbb{F}_{p^n}$ do not change under taking the *p*-th power. We know that $x \mapsto x^p$ is an endomorphism of \mathbb{F}_{p^n} (called the Frobenius endomorphism), so that it respects sums, and

$$(\operatorname{Tr}(x))^{p} = \left(\sum_{j=0}^{n-1} x^{p^{j}}\right)^{p} = \sum_{j=0}^{n-1} \left(x^{p^{j}}\right)^{p} = \sum_{j=0}^{n-1} \left(x^{p^{j+1}}\right) = \sum_{j=0}^{n-1} \left(x^{p^{j+1}}\right) = \sum_{j=0}^{n-1} \left(x^{p^{j}}\right) = \sum_{j=0}^{n-1} \left(x^{p^{j}}\right) = \operatorname{Tr}(x),$$

where we have used the fact that $x^{p^n} = x$ since $x \in \mathbb{F}_{p^n}$. Hence $\operatorname{Tr}(x) \in \mathbb{F}_p$ for each $x \in \mathbb{F}_{p^n}$. The same computation with a product instead of a sum gives that $N(x)^p = N(x)$ for $x \in \mathbb{F}_{p^n}$, so that $N(x) \in \mathbb{F}_p$.

 HS 14

- By definition, we have that $\operatorname{Tr} = \sum_{j=0}^{n-1} \varphi^j$, where $\varphi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is the Frobenius field endomorphism sending $x \mapsto x^p$, and φ^j is its *j*-th iteration. Since φ fixes \mathbb{F}_p and respects multiplication, it is an \mathbb{F}_p -linear map. Thus Tr is also \mathbb{F}_p -linear, as it is a sum of compositions of \mathbb{F}_p -linear maps $\mathbb{F}_p \to \mathbb{F}_p$ (for $j = 0, \varphi^0$ is the identity of \mathbb{F}_{p^n} , which is also \mathbb{F}_p -linear).
- For $x, y \in \mathbb{F}_{p^n}$, we have

$$\mathcal{N}(xy) = \prod_{j=0}^{n-1} (xy)^{p^j} = \prod_{j=0}^{n-1} x^{p^j} y^{p^j} = \prod_{j=0}^{n-1} x^{p^j} \prod_{j=0}^{n-1} y^{p^j} = \mathcal{N}(x)\mathcal{N}(y),$$

so that N is a multiplicative map. Moreover, since for $x \in \mathbb{F}_{p^n}$ one has $N(x) = x^{\sum_{j=0}^{n-1} p^j}$ and \mathbb{F}_{p^n} is a field (and hence an integral domain), we have that N(x) = 0 if and only if x = 0.

- 2. For K a field and n a positive integer, we define $GL_n(K)$ to be the multiplicative group of invertible square matrices of order n with coefficients in K. It is isomorphic to the automorphism group of the K-vector space K^n .
 - 1. For K a finite field of q elements, prove that the cardinality of $GL_n(K)$ is

$$|\operatorname{GL}_{n}(K)| = \prod_{j=0}^{n-1} (q^{n} - q^{j})$$

2. For |K| = q as before, and $q = p^r$ for some prime p and positive integer r, show that a p-Sylow subgroup of $\operatorname{GL}_n(K)$ is given by the group of upper triangular matrices with one on the diagonal,

$$H_n(K) = \left\{ \begin{pmatrix} 1 & a_{1,2} & \dots & a_{1,n} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \dots & 0 & 1 \end{pmatrix} : a_{i,j} \in K \right\}.$$

Solution:

1. By basic linear algebra, we have that a matrix $A \in M_n(K)$ is invertible if and only if its columns, interpreted as vectors in K^n , are linearly independent. Hence $|GL_n(K)|$ is the number of ordered *n*-tuples of *K*-linearly independent vectors in K^n . This can be found inductively by counting the number N_k of ordered *k*-tuples of *K*-linearly independent vectors in K^n , for $0 \le k \le n$. We claim that

$$N_k = \prod_{j=0}^{k-1} (q^n - q^j),$$

which for k = n gives indeed the desired cardinality.

We prove the claim $N_k = \prod_{j=0}^{k-1} (q^n - q^j)$ by induction on $0 \le k \le n$. For k = 0, we have $\prod_{j=0}^{k-1} (q^n - q^j) = 1$ (the empty product), and there is indeed one 0-tuple of K-linearly independent vectors, that is, the empty tuple. If this does not satisfy the reader, they can notice that $N_1 = |K^n| = q^n$, which coincides with $\prod_{j=0}^{1-1} (q^n - q^j)$. To conclude, suppose that $N_{k-1} = \prod_{j=0}^{k-2} (q^n - q^j)$. Now we have that each k-tuple of K-linear independent vectors consists of one of the N_{k-1} (k-1)-tuple of K-linear independent vectors. Since k-1 linearly independent vectors span over K precisely q^{k-1} vectors, while $|K^n| = q^n$, the k-th vector can be chosen among $(q^n - q^{k-1})$, and we obtain

$$N_k = N_{k-1}(q^n - q^{k-1}) = \prod_{j=0}^{k-1} (q^n - q^j),$$

proving the inductive step.

2. From the previous point, we have

$$|\operatorname{GL}_{n}(K)| = q^{\binom{n}{2}} \prod_{j=0}^{n-1} (q^{n-j} - 1),$$

where the product is not divisible by p (as p is prime and none of the factor is divisible by p, since they are congruent to -1 modulo p), while $q^{\binom{n}{2}}$ has p as unique prime factor. Hence a p-Sylow subgroup of $\operatorname{GL}_n(K)$ contains precisely $q^{\binom{n}{2}}$ elements. The given set $H_n(K)$ consists of invertible matrices (as they have determinant 1), and its cardinality is q^l , where l is the number of elements in the upper triangle which do not lie in the principal diagonal. We obtain that $l = (n^2 - n)/2 = \binom{n}{2}$, so that $H_n(K)$ has the cardinality of a p-Sylow subgroup of $\operatorname{GL}_n(K)$. To conclude, we just notice that $H_n(K)$ is indeed a subgroup of $\operatorname{GL}_n(K)$. This is because the determinant of its matrices is always 1, so that for $A \in H_n(K)$ we have that A^{-1} is the transpose of the matrix of cofactors. Since the cofactor matrix is easily seen to be lower-triangular with 1 in the diagonal, we can conclude that A^{-1} is still in $H_n(K)$. Moreover, $H_n(K)$ is closed by multiplication, as one can immediately check with the formulas for the coefficients of the product of two matrices.

3. Let G be a finite group and $V, W \subseteq G$ subsets such that |V| + |W| > |G|. Prove: G = VW. [*Hint:* For $g \in G$, the sets V and gW^{-1} need to intersect.]

Solution:

Fix $g \in G$. We want to prove that g = vw, for some $v \in V$ and $w \in W$. Since the map $G \to G$ sending $x \mapsto gx^{-1}$ is a bijection (whose inverse is indeed $y \mapsto y^{-1}g$), we have that $|gW^{-1}| = |W|$. Now

$$|G| < |V| + |g^{-1}W| = |V \cup gW^{-1}| + |V \cap gW^{-1}| \le |G| + |V \cap gW^{-1}|,$$

which implies that $V \cap gW^{-1} \neq \emptyset$. Then there exists $v \in V$ such that $v = gw^{-1}$ for some $w \in W$, which gives g = vw.

- **4.** Let F be a finite field. We say that $x \in F$ is a square in F if there exists $y \in F$ such that $y^2 = x$.
 - 1. Suppose that char(F) = 2. Prove that every element of F is a square in F.
 - 2. Now suppose that $char(F) = p \ge 3$. Let

$$S = \{ \alpha \in F \mid \exists b \in F : \alpha = b^2 \} \text{ and } S' = S \setminus \{0\}.$$

Prove:

- S' is a subgroup of index 2 of F^{\times} [*Hint:* the map $x \mapsto x^2$ of F^{\times} is not injective];
- $2 \cdot |S| > |F|$.
- 3. Deduce that for every finite field F, every element in F can be expressed as the sum of two squares in F. [*Hint:* Previous exercise.]
- 4. Let $F = \mathbb{F}_p$ with $p \ge 3$. Prove that $-1 \in \mathbb{F}_p$ is a square in \mathbb{F}_p if and only if $p \equiv 1 \pmod{4}$.

Solution:

In the following, we will denote by α the map $F \to F$ sending $x \mapsto x^2$. This is a multiplicative map (as F is a commutative ring) sending $0 \mapsto 0$ and $1 \mapsto 1$.

- 1. If char(F) = 2, we have that $\alpha : x \mapsto x^2$ is a field endomorphism of F, as for $x, y \in F$ we have $(x + y)^2 = x^2 + y^2 + 2xy = x^2 + y^2$. Then α is injective because it has trivial kernel ($x^2 = 0$ if and only if x = 0, as F is a field), and being F finite α needs to be surjective as well. In conclusion, $\text{Im}(\alpha) = F$, that is, every element in F is a square in F.
- The map α' := α|_{F×} is a group endomorphism of F[×], so that S' = Im(α') is a subgroup of F[×], whose index coincides with | ker(α')| by the First Isomorphism Theorem for groups. We have that ker(α') is the set of roots in F of the polynomial X² 1 = (X 1)(X + 1), that is, ker(α') = {±1}, so that, 1 and -1 being distinct when char(F) ≠ 2, we have [F[×] : S'] = | ker(α')| = 2.
 - By definition, |S| = |S'|+1. Moreover, we have just proven that $|S'| = \frac{1}{2}|F^{\times}| = \frac{1}{2}(|F|-1)$. Putting everything together, we can conclude that

$$2 \cdot |S| = 2 \cdot |S'| + 2 = |F| - 1 + 2 > |F|.$$

3. As fields of characteristic zero contain a copy of $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$, all finite fields have positive characteristic. If $\operatorname{char}(F) = 2$, part 1 proves that every element in F is a square, and in particular every element is a sum of two squares. If $\operatorname{char}(F) \ge 3$, using the notation of part 2 we need to prove that S + S = F. This follows immediately from the previous exercise, by taking the additive group F and the subsets V = W = S, so that |S| + |S| > |F| as we proved.

4. Let $F = \mathbb{F}_p$, and let us denote by $F^{\times 2}$ the set of invertible squares in F. As seen in class, we have that for each $a \in \mathbb{F}_p$ one has $a^p = a$, so that for each $a \in F^{\times}$ one has $a^{p-1} = 1$. This means that F^{\times} is the set of roots of the polynomial $f_p(X) = X^{p-1} - 1$. This polynomials factors (since 2|p-1) as

$$f_p(X) = (X^{\frac{p-1}{2}} - 1)(X^{\frac{p-1}{2}} + 1).$$

Suppose that $c \in F^{\times 2}$, with $c = b^2$ and $b \neq 0$. Then

$$c^{\frac{p-1}{2}} = b^{p-1} = 1,$$

so that c is a root of the factor $(X^{\frac{p-1}{2}} - 1)$. By point 2, we have that $|F^{\times 2}| = (p-1)/2$, and this implies that the for each $a \in F^{\times}$ one has

$$a \in F^{\times 2} \iff a^{\frac{p-1}{2}} = 1,$$
$$a \notin F^{\times 2} \iff a^{\frac{p-1}{2}} = -1.$$

Now we apply this for a = -1. We have that p is odd, so that we can write p = 2k + 1. Then $\frac{p-1}{2} = k$. If k is even, then $(-1)^{\frac{p-1}{2}} = 1$, so that -1 is a square in F. If k is odd, then $(-1)^k = -1$, so that -1 is not a square in F. Since k is even if and only if $p \equiv 1 \pmod{4}$, we can conclude that, for $p \geq 3, -1$ is a square in \mathbb{F}_p if and only if $p \equiv 1 \pmod{4}$.