Solutions of exercise sheet 12

The content of the marked exercises (*) should be known for the exam.

1. (*) Let p be a prime number and n a positive integer. For each element $x \in \mathbb{F}_{p^{n}}$, we define its trace and norm over \mathbb{F}_{p} as

$$
\operatorname{Tr}(x)=\sum_{j=0}^{n-1} x^{p^{j}} \text { and } \mathrm{N}(x)=\prod_{j=0}^{n-1} x^{p^{j}} .
$$

Check the following properties:

- For each $x \in \mathbb{F}_{p^{n}}$, both $\operatorname{Tr}(x)$ and $\mathrm{N}(x)$ lie in \mathbb{F}_{p};
- The map $\operatorname{Tr}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ is $\mathbb{F}_{p^{-}}$-linear;
- The map $\mathrm{N}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ is multiplicative (i.e, $\left.\mathrm{N}(x y)=\mathrm{N}(x) \mathrm{N}(y)\right)$, and $\mathrm{N}(x)=0$ if and only if $x=0$.
[Actually, these definitions of trace and norm agree with the more general ones we gave in Exercise 3 from Exercise sheet 11].

Solution:

- As seen in class, for $\alpha \in \mathbb{F}_{p^{n}}$, we have that $\alpha \in \mathbb{F}_{p}$ if and only if $\alpha^{p}=\alpha$. Hence we only need to show that the trace and the norm of $x \in \mathbb{F}_{p^{n}}$ do not change under taking the p-th power. We know that $x \mapsto x^{p}$ is an endomorphism of $\mathbb{F}_{p^{n}}$ (called the Frobenius endomorphism), so that it respects sums, and

$$
\begin{aligned}
(\operatorname{Tr}(x))^{p}= & \left(\sum_{j=0}^{n-1} x^{p^{j}}\right)^{p}=\sum_{j=0}^{n-1}\left(x^{p^{j}}\right)^{p}=\sum_{j=0}^{n-1}\left(x^{p^{j+1}}\right)=\sum_{j=0}^{n-1}\left(x^{p^{j+1}}\right)= \\
& =\sum_{j=1}^{n}\left(x^{p^{j}}\right)=\sum_{j=0}^{n-1}\left(x^{p^{j}}\right)=\operatorname{Tr}(x)
\end{aligned}
$$

where we have used the fact that $x^{p^{n}}=x$ since $x \in \mathbb{F}_{p^{n}}$. Hence $\operatorname{Tr}(x) \in \mathbb{F}_{p}$ for each $x \in \mathbb{F}_{p^{n}}$. The same computation with a product instead of a sum gives that $\mathrm{N}(x)^{p}=\mathrm{N}(x)$ for $x \in \mathbb{F}_{p^{n}}$, so that $\mathrm{N}(x) \in \mathbb{F}_{p}$.

- By definition, we have that $\operatorname{Tr}=\sum_{j=0}^{n-1} \varphi^{j}$, where $\varphi: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ is the Frobenius field endomorphism sending $x \mapsto x^{p}$, and φ^{j} is its j-th iteration. Since φ fixes \mathbb{F}_{p} and respects multiplication, it is an \mathbb{F}_{p}-linear map. Thus Tr is also \mathbb{F}_{p}-linear, as it is a sum of compositions of \mathbb{F}_{p}-linear maps $\mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ (for $j=0, \varphi^{0}$ is the identity of $\mathbb{F}_{p^{n}}$, which is also $\mathbb{F}_{p^{-} \text {-linear). }}$
- For $x, y \in \mathbb{F}_{p^{n}}$, we have

$$
\mathrm{N}(x y)=\prod_{j=0}^{n-1}(x y)^{p^{j}}=\prod_{j=0}^{n-1} x^{p^{j}} y^{p^{j}}=\prod_{j=0}^{n-1} x^{p^{j}} \prod_{j=0}^{n-1} y^{p^{j}}=\mathrm{N}(x) \mathrm{N}(y),
$$

so that N is a multiplicative map. Moreover, since for $x \in \mathbb{F}_{p^{n}}$ one has $\mathrm{N}(x)=$ $x^{\sum_{j=0}^{n-1} p^{j}}$ and $\mathbb{F}_{p^{n}}$ is a field (and hence an integral domain), we have that $\mathrm{N}(x)=0$ if and only if $x=0$.
2. For K a field and n a positive integer, we define $\mathrm{GL}_{n}(K)$ to be the multiplicative group of invertible square matrices of order n with coefficients in K. It is isomorphic to the automorphism group of the K-vector space K^{n}.

1. For K a finite field of q elements, prove that the cardinality of $\mathrm{GL}_{n}(K)$ is

$$
\left|\mathrm{GL}_{n}(K)\right|=\prod_{j=0}^{n-1}\left(q^{n}-q^{j}\right)
$$

2. For $|K|=q$ as before, and $q=p^{r}$ for some prime p and positive integer r, show that a p-Sylow subgroup of $\mathrm{GL}_{n}(K)$ is given by the group of upper triangular matrices with one on the diagonal,

$$
H_{n}(K)=\left\{\left(\begin{array}{cccc}
1 & a_{1,2} & \ldots & a_{1, n} \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & a_{n-1, n} \\
0 & \ldots & 0 & 1
\end{array}\right): a_{i, j} \in K\right\}
$$

Solution:

1. By basic linear algebra, we have that a matrix $A \in M_{n}(K)$ is invertible if and only if its columns, interpreted as vectors in K^{n}, are linearly independent. Hence $\left|\mathrm{G} L_{n}(K)\right|$ is the number of ordered n-tuples of K-linearly independent vectors in K^{n}. This can be found inductively by counting the number N_{k} of ordered k-tuples of K-linearly independent vectors in K^{n}, for $0 \leq k \leq n$. We claim that

$$
N_{k}=\prod_{j=0}^{k-1}\left(q^{n}-q^{j}\right)
$$

which for $k=n$ gives indeed the desired cardinality.

We prove the claim $N_{k}=\prod_{j=0}^{k-1}\left(q^{n}-q^{j}\right)$ by induction on $0 \leq k \leq n$. For $k=0$, we have $\prod_{j=0}^{k-1}\left(q^{n}-q^{j}\right)=1$ (the empty product), and there is indeed one 0 -tuple of K linearly independent vectors, that is, the empty tuple. If this does not satisfy the reader, they can notice that $N_{1}=\left|K^{n}\right|=q^{n}$, which coincides with $\prod_{j=0}^{1-1}\left(q^{n}-q^{j}\right)$. To conclude, suppose that $N_{k-1}=\prod_{j=0}^{k-2}\left(q^{n}-q^{j}\right)$. Now we have that each k-tuple of K-linear independent vectors consists of one of the $N_{k-1}(k-1)$-tuple of K linear independent vectors, followed by a vector which does not lie in the span of the previous $k-1$ vectors. Since $k-1$ linearly independent vectors span over K precisely q^{k-1} vectors, while $\left|K^{n}\right|=q^{n}$, the k-th vector can be chosen among $\left(q^{n}-q^{k-1}\right)$, and we obtain

$$
N_{k}=N_{k-1}\left(q^{n}-q^{k-1}\right)=\prod_{j=0}^{k-1}\left(q^{n}-q^{j}\right)
$$

proving the inductive step.
2. From the previous point, we have

$$
\left|\mathrm{GL}_{n}(K)\right|=q^{\binom{n}{2}} \prod_{j=0}^{n-1}\left(q^{n-j}-1\right)
$$

where the product is not divisible by p (as p is prime and none of the factor is divisible by p, since they are congruent to -1 modulo p), while $q^{\binom{n}{2}}$ has p as unique prime factor. Hence a p-Sylow subgroup of $\mathrm{GL}_{n}(K)$ contains precisely $q^{\binom{n}{2}}$ elements. The given set $H_{n}(K)$ consists of invertible matrices (as they have determinant 1), and its cardinality is q^{l}, where l is the number of elements in the upper triangle which do not lie in the principal diagonal. We obtain that $l=\left(n^{2}-n\right) / 2=\binom{n}{2}$, so that $H_{n}(K)$ has the cardinality of a p-Sylow subgroup of $\mathrm{GL}_{n}(K)$. To conclude, we just notice that $H_{n}(K)$ is indeed a subgroup of $\mathrm{GL}_{n}(K)$. This is because the determinant of its matrices is always 1 , so that for $A \in H_{n}(K)$ we have that A^{-1} is the transpose of the matrix of cofactors. Since the cofactor matrix is easily seen to be lower-triangular with 1 in the diagonal, we can conclude that A^{-1} is still in $H_{n}(K)$. Moreover, $H_{n}(K)$ is closed by multiplication, as one can immediately check with the formulas for the coefficients of the product of two matrices.
3. Let G be a finite group and $V, W \subseteq G$ subsets such that $|V|+|W|>|G|$. Prove: $G=V W$. [Hint: For $g \in G$, the sets V and $g W^{-1}$ need to intersect.]

Solution:

Fix $g \in G$. We want to prove that $g=v w$, for some $v \in V$ and $w \in W$. Since the map $G \rightarrow G$ sending $x \mapsto g x^{-1}$ is a bijection (whose inverse is indeed $y \mapsto y^{-1} g$), we have that $\left|g W^{-1}\right|=|W|$. Now

$$
|G|<|V|+\left|g^{-1} W\right|=\left|V \cup g W^{-1}\right|+\left|V \cap g W^{-1}\right| \leq|G|+\left|V \cap g W^{-1}\right|
$$

which implies that $V \cap g W^{-1} \neq \varnothing$. Then there exists $v \in V$ such that $v=g w^{-1}$ for some $w \in W$, which gives $g=v w$.
4. Let F be a finite field. We say that $x \in F$ is a square in F if there exists $y \in F$ such that $y^{2}=x$.

1. Suppose that $\operatorname{char}(F)=2$. Prove that every element of F is a square in F.
2. Now suppose that $\operatorname{char}(F)=p \geq 3$. Let

$$
S=\left\{\alpha \in F \mid \exists b \in F: \alpha=b^{2}\right\} \text { and } S^{\prime}=S \backslash\{0\}
$$

Prove:

- S^{\prime} is a subgroup of index 2 of F^{\times}[Hint: the map $x \mapsto x^{2}$ of F^{\times}is not injective];
- $2 \cdot|S|>|F|$.

3. Deduce that for every finite field F, every element in F can be expressed as the sum of two squares in F. [Hint: Previous exercise.]
4. Let $F=\mathbb{F}_{p}$ with $p \geq 3$. Prove that $-1 \in \mathbb{F}_{p}$ is a square in \mathbb{F}_{p} if and only if $p \equiv 1$ $(\bmod 4)$.

Solution:

In the following, we will denote by α the map $F \rightarrow F$ sending $x \mapsto x^{2}$. This is a multiplicative map (as F is a commutative ring) sending $0 \mapsto 0$ and $1 \mapsto 1$.

1. If $\operatorname{char}(F)=2$, we have that $\alpha: x \mapsto x^{2}$ is a field endomorphism of F, as for $x, y \in F$ we have $(x+y)^{2}=x^{2}+y^{2}+2 x y=x^{2}+y^{2}$. Then α is injective because it has trivial kernel $\left(x^{2}=0\right.$ if and only if $x=0$, as F is a field $)$, and being F finite α needs to be surjective as well. In conclusion, $\operatorname{Im}(\alpha)=F$, that is, every element in F is a square in F.
2. - The map $\alpha^{\prime}:=\left.\alpha\right|_{F^{\times}}$is a group endomorphism of F^{\times}, so that $S^{\prime}=\operatorname{Im}\left(\alpha^{\prime}\right)$ is a subgroup of F^{\times}, whose index coincides with $\left|\operatorname{ker}\left(\alpha^{\prime}\right)\right|$ by the First Isomorphism Theorem for groups. We have that $\operatorname{ker}\left(\alpha^{\prime}\right)$ is the set of roots in F of the polynomial $X^{2}-1=(X-1)(X+1)$, that is, $\operatorname{ker}\left(\alpha^{\prime}\right)=\{ \pm 1\}$, so that, 1 and -1 being distinct when $\operatorname{char}(F) \neq 2$, we have $\left[F^{\times}: S^{\prime}\right]=\left|\operatorname{ker}\left(\alpha^{\prime}\right)\right|=2$.

- By definition, $|S|=\left|S^{\prime}\right|+1$. Moreover, we have just proven that $\left|S^{\prime}\right|=\frac{1}{2}\left|F^{\times}\right|=$ $\frac{1}{2}(|F|-1)$. Putting everything together, we can conclude that

$$
2 \cdot|S|=2 \cdot\left|S^{\prime}\right|+2=|F|-1+2>|F|
$$

3. As fields of characteristic zero contain a copy of $\operatorname{Frac}(\mathbb{Z})=\mathbb{Q}$, all finite fields have positive characteristic. If $\operatorname{char}(F)=2$, part 1 proves that every element in F is a square, and in particular every element is a sum of two squares. If $\operatorname{char}(F) \geq 3$, using the notation of part 2 we need to prove that $S+S=F$. This follows immediately from the previous exercise, by taking the additive group F and the subsets $V=W=S$, so that $|S|+|S|>|F|$ as we proved.
4. Let $F=\mathbb{F}_{p}$, and let us denote by $F^{\times 2}$ the set of invertible squares in F. As seen in class, we have that for each $a \in \mathbb{F}_{p}$ one has $a^{p}=a$, so that for each $a \in F^{\times}$ one has $a^{p-1}=1$. This means that F^{\times}is the set of roots of the polynomial $f_{p}(X)=X^{p-1}-1$. This polynomials factors (since $2 \mid p-1$) as

$$
f_{p}(X)=\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right) .
$$

Suppose that $c \in F^{\times 2}$, with $c=b^{2}$ and $b \neq 0$. Then

$$
c^{\frac{p-1}{2}}=b^{p-1}=1,
$$

so that c is a root of the factor $\left(X^{\frac{p-1}{2}}-1\right)$. By point 2 , we have that $\left|F^{\times 2}\right|=$ ($p-1$)/2, and this implies that the for each $a \in F^{\times}$one has

$$
\begin{aligned}
& a \in F^{\times 2} \Longleftrightarrow a^{\frac{p-1}{2}}=1, \\
& a \notin F^{\times 2} \Longleftrightarrow a^{\frac{p-1}{2}}=-1 .
\end{aligned}
$$

Now we apply this for $a=-1$. We have that p is odd, so that we can write $p=2 k+1$. Then $\frac{p-1}{2}=k$. If k is even, then $(-1)^{\frac{p-1}{2}}=1$, so that -1 is a square in F. If k is odd, then $(-1)^{k}=-1$, so that -1 is not a square in F. Since k is even if and only if $p \equiv 1(\bmod 4)$, we can conclude that, for $p \geq 3,-1$ is a square in \mathbb{F}_{p} if and only if $p \equiv 1(\bmod 4)$.

