D-MATH Prof. Emmanuel Kowalski Algebra I

Exercise sheet 13

The content of the marked exercises (*) should be known for the exam.

1. 1. Show that the polynomial

$$P = X^3 + 3X + 3$$

is irreducible in $\mathbb{F}_5[X]$.

- 2. Let α be a root of P in an algebraic closure L of \mathbb{F}_5 , and $\mathbb{F}_{125} = \mathbb{F}_5(\alpha)$. Compute the matrix of the Frobenius automorphism $\phi : \mathbb{F}_{125} \to \mathbb{F}_{125}$ in the basis $(1, \alpha, \alpha^2)$.
- 3. Write the element

$$\beta = \frac{1}{1 - \alpha} \in \mathbb{F}_{125}$$

as an \mathbb{F}_5 -linear combination of 1, α and α^2 .

- 4. Prove that α is a generator of the cyclic group $\mathbb{F}_{125}^{\times}$.
- **2.** Let p be an odd prime number, and denote by $\left(\frac{x}{p}\right)$ the Legendre symbol for $x \in \mathbb{F}_p^{\times}$.
 - 1. Prove that

$$\left(\frac{x}{p}\right) \equiv x^{\frac{p-1}{2}} \pmod{p},$$

and that this determines $\left(\frac{x}{p}\right) \in \{\pm 1\}$ uniquely.

- 2. Prove that the map $\mathbb{F}_p^{\times} \to \mathbb{C}^{\times}$ sending $x \mapsto \left(\frac{x}{p}\right)$ is a group homomorphism.
- 3. Prove that $\left(\frac{-1}{p}\right) = 1$ if and only if $p \equiv 1 \pmod{4}$.
- 4. Let s = (p-1)/2. Prove that

$$s! \equiv 2^s s! (-1)^{\frac{s(s+1)}{2}} \pmod{p}.$$

[*Hint*: $s! = (-1)^{\frac{s(s+1)}{2}} \prod_{j=1}^{s} (-1)^j j$, and $-j \equiv p - j \pmod{p}$.]

5. Deduce that

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}},$$

and find for which equivalence classes of p modulo 8 we have $\left(\frac{2}{p}\right) = 1$.

6. Find congruence conditions on p that are equivalent to 13 being a square modulo p.

- 7. Deduce that if $p \equiv 6 \pmod{13}$ is a prime number, then there exist only finitely many $n \in \mathbb{Z}_{>0}$ such that $n! + n^p n + 13$ is a square in \mathbb{Z} .
- **3.** (*) Let K be a field of characteristic p > 0, containing \mathbb{F}_p . Let $a \in K$.
 - 1. Show that the polynomial $f = X^p X a$ is separable in K[X].
 - 2. Show that if L is an algebraically closed extension of K and $\alpha \in L$ is a root of f, then

{roots of
$$f$$
 in L } = { $\alpha + x, x \in \mathbb{F}_p$ }.

- 3. Show that if $a \notin \{y^p y : y \in K\}$, then $K(\alpha)$ has degree p over K. What happens if $a = y^p y$ for some $y \in K$?
- 4. Show that, when $K \neq K(\alpha)$, the set of field automorphisms of $K(\alpha)$ which fix all elements in K, endowed with composition, is a group, and that it is cyclic of order p.
- 5. Find a polynomial $Q_p \in \mathbb{F}_p[X]$ which defines \mathbb{F}_{p^p} , in the sense that $\mathbb{F}_{p^p} = \mathbb{F}_p(\alpha)$ for some root α of Q_p in an algebraic closure of \mathbb{F}_p .

Due to: 18 December 2014, 3 pm.