Solutions of exercise sheet 13

The content of the marked exercises (*) should be known for the exam.

1. 2. Show that the polynomial

$$
P=X^{3}+3 X+3
$$

is irreducible in $\mathbb{F}_{5}[X]$.
2. Let α be a root of P in an algebraic closure L of \mathbb{F}_{5}, and $\mathbb{F}_{125}=\mathbb{F}_{5}(\alpha)$. Compute the matrix of the Frobenius automorphism $\phi: \mathbb{F}_{125} \rightarrow \mathbb{F}_{125}$ in the basis $\left(1, \alpha, \alpha^{2}\right)$.
3. Write the element

$$
\beta=\frac{1}{1-\alpha} \in \mathbb{F}_{125}
$$

as an \mathbb{F}_{5}-linear combination of $1, \alpha$ and α^{2}.
4. Prove that α is a generator of the cyclic group $\mathbb{F}_{125}^{\times}$.

Solution: In the following, we will denote elements of \mathbb{F}_{5} just with integer numbers, so that $5=0$.

1. Since the polynomial $P \in \mathbb{F}_{5}[X]$ has degree 3 , every proper decomposition of P has a linear factor, which means that P is irreducible if and only if it has no root in \mathbb{F}_{5}. Since $P(0)=3, P(1)=2, P(2)=2, P(3)=4$ and $P(4)=4$, we obtain that P has no root in \mathbb{F}_{5}, so that it is irreducible in \mathbb{F}_{5}.
2. Since α is a root of P, we have

$$
\begin{aligned}
\alpha^{3} & =-3 \alpha-3=2(\alpha+1) \text { and } \\
(\alpha+1)^{3} & =\alpha^{3}+3 \alpha^{2}+3 \alpha+1=3\left(\alpha^{2}+1\right)
\end{aligned}
$$

which implies in particular that

$$
\alpha^{9}=-\alpha^{2}-1
$$

To compute the matrix of $\phi: x \mapsto x^{5}$ with respect to the basis $\left(1, \alpha, \alpha^{2}\right)$, where α is a root of P, we write down the images of $1, \alpha$ and α^{2} as \mathbb{F}_{5}-linear combinations of $1, \alpha$ and α^{2}. We get the following:

$$
\begin{aligned}
\phi(1) & =1 \\
\phi(\alpha) & =\alpha^{5}=\alpha^{2} \cdot 2 \cdot(\alpha+1)=2 \alpha^{3}+2 \alpha^{2}=-1-\alpha+2 \alpha^{2} \\
\phi\left(\alpha^{2}\right) & =\alpha \cdot \alpha^{9}=-\alpha^{3}-\alpha=-2+2 \alpha
\end{aligned}
$$

Then the matrix associated to ϕ with respect to the basis $\left(1, \alpha, \alpha^{2}\right)$ is

$$
M_{\phi}=\left(\begin{array}{rrr}
1 & -1 & -2 \\
0 & -1 & 2 \\
0 & 2 & 0
\end{array}\right)
$$

3. Suppose that $\beta=\lambda+\mu \alpha+\nu \alpha^{2}$ for $\lambda, \mu, \nu \in \mathbb{F}_{5}$. Then the condition $1=\beta(1-\alpha)$ gives

$$
1=\lambda+(\mu-\lambda) \alpha+(\nu-\mu) \alpha^{2}-\nu \alpha^{3}=\lambda+3 \nu+(3 \nu+\mu-\lambda) \alpha+(\nu-\mu) \alpha^{2},
$$

which is equivalent to

$$
\left\{\begin{array}{l}
\lambda+3 \nu=1 \\
3 \nu+\mu-\lambda=0 \\
\nu-\mu=0
\end{array}\right.
$$

Solving the equations backwards we obtain $\mu=\nu, \lambda=4 \nu$ and $7 \nu=1$, so that the unique solution is $(\lambda, \mu, \nu)=(2,3,3)$, and $\beta=2+3 \alpha+3 \alpha^{2}$.
4. We have that $\left|\mathbb{F}_{125}^{\times}\right|=124=4 \cdot 31$, and by Lagrange's theorem applied to the subgroup $\langle\alpha\rangle$ we see that the order of α is a divisor of 124 . We want to prove that indeed $\operatorname{ord}_{\mathbb{F}_{125}^{\times}}(\alpha)=124$, and this can be done by checking that α^{4} and α^{62} both differ from 1 , since every proper divisor of 124 divides either 4 or 62 . Of course, $\alpha^{4}=2\left(\alpha^{2}+\alpha\right) \neq 1$, so that we are left to check that $\alpha^{62} \neq 1$. We have

$$
\alpha^{62}=\alpha^{-1}\left(\alpha^{9}\right)^{7}=-\alpha^{-1}\left(\alpha^{2}+1\right)^{7} .
$$

To proceed with the computation, notice that

$$
\begin{aligned}
& \left(\alpha^{2}+1\right)^{3}=\alpha^{6}+3 \alpha^{4}+3 \alpha^{2}+1=4(\alpha+1)^{2}+\alpha^{2}+\alpha+3 \alpha^{2}+1=3 \alpha^{2}-\alpha, \\
& \left(\alpha^{2}+1\right)^{6}=\left(3 \alpha^{2}-\alpha\right)^{2}=-\alpha^{4}-\alpha^{3}+\alpha^{2}=-\alpha^{2}+\alpha-2 \text { and } \\
& \left(\alpha^{2}+1\right)^{7}=\left(-\alpha^{2}+\alpha-2\right)\left(\alpha^{2}+1\right)=-\alpha^{4}-\alpha^{2}+\alpha^{3}+\alpha-2 \alpha^{2}-2=\alpha .
\end{aligned}
$$

Then

$$
\alpha^{62}=-\alpha^{-1} \alpha=-1 \neq 1,
$$

and we can conclude that α generates $\mathbb{F}_{125}^{\times}$.
2. Let p be an odd prime number, and denote by $\left(\frac{x}{p}\right)$ the Legendre symbol for $x \in \mathbb{F}_{p}^{\times}$.

1. Prove that

$$
\left(\frac{x}{p}\right) \equiv x^{\frac{p-1}{2}}(\bmod p)
$$

and that this determines $\left(\frac{x}{p}\right) \in\{ \pm 1\}$ uniquely.
2. Prove that the map $\mathbb{F}_{p}^{\times} \rightarrow \mathbb{C}^{\times}$sending $x \mapsto\left(\frac{x}{p}\right)$ is a group homomorphism.
3. Prove that $\left(\frac{-1}{p}\right)=1$ if and only if $p \equiv 1(\bmod 4)$.
4. Let $s=(p-1) / 2$. Prove that

$$
s!\equiv 2^{s} s!(-1)^{\frac{s(s+1)}{2}}(\bmod p)
$$

[Hint: $s!=(-1)^{\frac{s(s+1)}{2}} \prod_{j=1}^{s}(-1)^{j} j$, and $-j \equiv p-j(\bmod p)$.]
5. Deduce that

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}
$$

and find for which equivalence classes of p modulo 8 we have $\left(\frac{2}{p}\right)=1$.
6. Find congruence conditions on p that are equivalent to 13 being a square modulo p.
7. Deduce that if $p \equiv 6(\bmod 13)$ is a prime number, then there exist only finitely many $n \in \mathbb{Z}_{>0}$ such that $n!+n^{p}-n+13$ is a square in \mathbb{Z}.

Solution:

1. As seen in class, we have that for each $a \in \mathbb{F}_{p}$ one has $a^{p}=a$, so that for each $a \in \mathbb{F}_{p}^{\times}$one has $a^{p-1}=1$. This means that \mathbb{F}_{p}^{\times}is the set of roots of the polynomial $f_{p}(X)=X^{p-1}-1$. This polynomials factors (since $2 \mid p-1$) as

$$
f_{p}(X)=\left(X^{\frac{p-1}{2}}-1\right)\left(X^{\frac{p-1}{2}}+1\right) .
$$

Suppose that $c \in \mathbb{F}_{p}^{\times 2}$, with $c=b^{2}$ and $b \neq 0$. Then

$$
c^{\frac{p-1}{2}}=b^{p-1}=1,
$$

so that c is a root of the factor $\left(X^{\frac{p-1}{2}}-1\right)$. As we have seen in Exercise 4.2 from Exercise sheet $12,\left|\mathbb{F}_{p}^{\times 2}\right|=(p-1) / 2$, and this implies that the for each $x \in \mathbb{F}_{p}^{\times}$ one has

$$
\begin{gathered}
\left(\frac{x}{p}\right)=1 \Longleftrightarrow x \in \mathbb{F}_{p}^{\times 2} \Longleftrightarrow x^{\frac{p-1}{2}}=1 \\
\left(\frac{x}{p}\right)=-1 \Longleftrightarrow x \notin \mathbb{F}_{p}^{\times 2} \Longleftrightarrow x^{\frac{p-1}{2}}=-1
\end{gathered}
$$

In both cases, we have that

$$
\left(\frac{x}{p}\right) \equiv x^{\frac{p-1}{2}}(\bmod p)
$$

This of course determines uniquely the value of $\left(\frac{x}{p}\right)$ as p is odd so that $1 \neq-1$ in \mathbb{F}_{p}.
2. This follows immediately from the previous point, as for $x, y \in \mathbb{F}_{p}^{\times}$, one has $(x y)^{\frac{p-1}{2}}=x^{\frac{p-1}{2}} y^{\frac{p-1}{2}}$.
3. Applying point 1 with $x=1$, we have that $\left(\frac{-1}{p}\right)=1$ if and only if $(p-1) / 2$ is even, and this, considering that p is odd - so that $p \equiv 1$ or $p \equiv 3(\bmod 4)$ - is easily seen to happen precisely when $p \equiv 1(\bmod 4)$.
4. We have

$$
\begin{aligned}
s! & =\prod_{j=1}^{s}(-1)^{j} \prod_{j=1}^{s}(-1)^{j} j=(-1)^{\sum_{j=1}^{s} j} \prod_{k=1}^{\left\lfloor\frac{s}{2}\right\rfloor}(2 k) \prod_{k=1}^{\left\lceil\frac{s}{2}\right\rceil}(-(2 k-1)) \equiv \\
& \equiv(-1)^{\frac{s(s+1)}{2}} \prod_{k=1}^{\left\lfloor\frac{s}{2}\right\rfloor}(2 k) \prod_{k=1}^{\left\lceil\frac{s}{2}\right\rceil}(p-2 k+1)
\end{aligned}
$$

Notice that the factors in the two products are distinct positive even (since p is odd) integers which are strictly smaller than p. There is a total of $\left\lfloor\frac{s}{2}\right\rfloor+\left\lceil\frac{s}{2}\right\rceil=$ $s=(p-1) / 2$ factors in the product, so that we can conclude that those factors are the numbers $2,4, \ldots, p-1$. Hence

$$
s!\equiv(-1)^{\frac{s(s+1)}{2}} \prod_{j=1}^{s}(2 j)=(-1)^{\frac{s(s+1)}{2}} 2^{s} \prod_{j=1}^{s} j=(-1)^{\frac{s(s+1)}{2}} 2^{s} s!
$$

which is exactly the equivalence modulo p that we wanted to prove.
5. From the previous point we have $s=(p-1) / 2<p$, and $p \nmid s$!, so that s ! is invertible modulo p and the equivalence we proved implies (considering that $\left.s(s+1) / 2=\left(p^{2}-1\right) / 8\right)$ that

$$
1 \equiv 2^{s}(-1)^{\frac{p^{2}-1}{8}}(\bmod p)
$$

which is equivalent to

$$
2^{s} \equiv(-1)^{\frac{p^{2}-1}{8}}(\bmod p)
$$

Now we apply Point 1, which gives

$$
\left(\frac{2}{p}\right) \equiv 2^{s} \equiv(-1)^{\frac{p^{2}-1}{8}}
$$

We have that $\left(\frac{2}{p}\right)=1$ if and only if $\frac{p^{2}-1}{8}=\frac{(p+1)(p-1)}{8}$ is even, and this happens if and only if either $p+1$ or $p-1$ is divisible by 8 , which is equivalent to saying that $p \equiv \pm 1(\bmod 8)$. So we can write

$$
\left(\frac{2}{p}\right)= \begin{cases}1 & \text { if } p \equiv \pm 1 \bmod 8 \\ -1 & \text { if } p \equiv \pm 3 \bmod 8\end{cases}
$$

6. Of course, if $p=13$ we have that $13=0$ in \mathbb{F}_{p}, which is a square. Hence we will exclude this case. Then $13 \in \mathbb{F}_{p}^{\times}$, and we want to determine $\left(\frac{13}{p}\right)$. By the quadratic reciprocity law, we have

$$
\left(\frac{13}{p}\right)=\left(\frac{p}{13}\right) \cdot(-1)^{\frac{p-1}{2} \frac{13-1}{2}}=\left(\frac{p}{13}\right)
$$

so that we just need to find the squares in \mathbb{F}_{13}. In \mathbb{F}_{13}, one has

$$
(\pm 1)^{2}=1,(\pm 2)^{2}=4,(\pm 3)^{2}=-4,(\pm 4)^{2}=3,(\pm 5)^{2}=-1,(\pm 6)^{2}=-3
$$

In conclusion, we have that 13 is a square if \mathbb{F}_{p} if and only if p is congruent to $0, \pm 1, \pm 3$ or ± 4 modulo 13 .
7. Let $\gamma_{p}(n):=n!+n^{p}-n+13$. If $\gamma_{p}(n)$ is a square in \mathbb{Z}, then it is a square also modulo p. For $n \geq p$, we have that $p \mid n!$, and that $n^{p} \equiv n$ by Fermat's little theorem. Hence for $n \geq p$ we get $\gamma_{p}(n) \equiv 13(\bmod p)$, which by the previous point is not a square when $p \equiv 6(\bmod 13)$. Hence $\gamma_{p}(n)$ is not a square in \mathbb{Z} for $n \geq p$. In particular, $\gamma_{p}(n)$ is a square for only finitely many values of n.
3. $\left(^{*}\right)$ Let K be a field of characteristic $p>0$, containing \mathbb{F}_{p}. Let $a \in K$.

1. Show that the polynomial $f=X^{p}-X-a$ is separable in $K[X]$.
2. Show that if L is an algebraically closed extension of K and $\alpha \in L$ is a root of f, then

$$
\{\text { roots of } f \text { in } L\}=\left\{\alpha+x, x \in \mathbb{F}_{p}\right\}
$$

3. Show that if $a \notin\left\{y^{p}-y: y \in K\right\}$, then $K(\alpha)$ has degree p over K. What happens if $a=y^{p}-y$ for some $y \in K$?
4. Show that, when $K \neq K(\alpha)$, the set of field automorphisms of $K(\alpha)$ which fix all elements in K, endowed with composition, is a group, and that it is cyclic of order p.
5. Find a polynomial $Q_{p} \in \mathbb{F}_{p}[X]$ which defines $\mathbb{F}_{p^{p}}$, in the sense that $\mathbb{F}_{p^{p}}=\mathbb{F}_{p}(\alpha)$ for some root α of Q_{p} in an algebraic closure of \mathbb{F}_{p}.

Solution:

1. We have that $f^{\prime}(X)=p X^{p-1}-1=-1$, so that f and f^{\prime} are necessarily coprime in $K[X]$ and f is separable by a Criterion seen in class.
2. Suppose $\alpha \in L$ is a root of f. Since raising to the p-th power (i.e., computing the Frobenius automorphism) respects the sums, for $x \in \mathbb{F}_{p}$ we get

$$
f(\alpha+x)=(\alpha+x)^{p}-(\alpha+x)-a=f(\alpha)+x^{p}-x=0,
$$

since $x^{p}=x$ for $x \in \mathbb{F}_{p}$ and α is a root of f. Since $\left|\alpha+\mathbb{F}_{p}\right|=p=\operatorname{deg}(f)$, there cannot be other roots, and we can conclude that

$$
\{\text { roots of } f \text { in } L\}=\left\{\alpha+x, x \in \mathbb{F}_{p}\right\} .
$$

3. We start from the easy case: if $a=y^{p}-y$ for some $y \in K$, then $\alpha=y \in K$ is a root of f, and $\alpha+\mathbb{F}_{p}=\mathbb{F}_{p} \subseteq K$, so that any root of f is indeed in K. This means that $K(\alpha)=K$ in this case.

Now assume that $a \notin\left\{y^{p}-y: y \in K\right\}$. Then all the roots $\alpha+x$ of f lie outside K, and we claim that f is irreducible. This claim implies then that $K(\alpha) \cong K[X] /(f(X))$, so that $K(\alpha)$ has degree p over K. To prove our claim, by previous point we have that f factors in $L[X]$ as

$$
f(X)=\prod_{x \in \mathbb{F}_{p}}(X-\alpha-x),
$$

so that if $f=g h$ in $K[X]$, unique factorization in $L[X]$ gives that g is, up to a multiplicative constant,

$$
g=\prod_{x \in I}(X-\alpha-x),
$$

where $I \subseteq \mathbb{F}_{p}$. Let $d=|I|=\operatorname{deg}(g)$, and suppose that $d>0$ (else, the factorization is trivial and we are done). Then the coefficient of g of the term of degree $d-1$ is $-\sum_{x \in I}(\alpha+x)=-d \alpha+\sum_{x \in I} x$. This coefficient needs to lie in K, and since $\sum_{x \in I} x \in \mathbb{F}_{p} \subseteq K$, we get $-d \alpha \in K$. But $\alpha \notin K$, so that the unique remaining possibility is that $d=p$, in which case the decomposition $f=g h$ is trivial. This proves that f is irreducible, which was the remaining claim.
4. If $K \neq K(\alpha)$, by previous point we get that $K(\alpha)$ is a degree- p extension of K. Let us denote by $\operatorname{Aut}_{K}(K(\alpha))$ the set of field automorphisms of $K(\alpha)$ which fix K. It is clearly a group with respect to composition since automorphism are invertible and the identity $\operatorname{id}_{K(\alpha)}$ fixes K. Notice that any endomorphism of $K(\alpha)$ is injective as $K(\alpha)$ is a field. Moreover, if such an endomorphism fixes K, then it is also a K-linear map $K(\alpha) \rightarrow K(\alpha)$, and since those are K-vector spaces of same dimension p, we can conclude that every endomorphism of $K(\alpha)$ fixing K is an automorphism. Hence $\operatorname{Aut}_{K}(K(\alpha))$ coincides with the sets of endomorphisms of $K(\alpha)$ fixing K. We have that $K(\alpha) \cong K[X] /\left(X^{p}-X-1\right)$, with $\alpha \leftrightarrow X$, so that to determine a ring homomorphism $K(\alpha) \rightarrow K(\alpha)$ fixing K is equivalent to choosing an image for α in $K(\alpha)$ which still satisfies the polynomial $X^{p}-X-1$. By Point 2, this means that

$$
\operatorname{Aut}_{K}(K(\alpha))=\left\{\gamma: K(\alpha) \rightarrow K(\alpha):\left.\gamma\right|_{K}=\operatorname{id}_{K}, \gamma(\alpha)=\alpha+x, x \in \mathbb{F}_{p}\right\}
$$

Hence there are $\left|\mathbb{F}_{p}\right|=p$ elements in $\operatorname{Aut}_{K}(K(\alpha))$, and this implies automatically that Aut $_{K}(K(\alpha))$ is a cyclic group.
5. By Point 3 , we just need to take an element $a \notin\left\{y^{p}-y: y \in \mathbb{F}_{p}\right\}$. Since $y^{p}-y=0$ for every $y \in \mathbb{F}_{p}$, we can just take $a=1$, so that Q_{p} is a separable irreducible polynomial, and so it defines $\mathbb{F}_{p^{p}}$ as an extension of \mathbb{F}_{p}.

