Exercise sheet 14

[Groups]

1. Let G and H be groups and $\varphi: G \longrightarrow H$ a group homomorphism. If $N \triangleleft G$ is a normal subgroup, and φ is surjective, then show that $\varphi(N) \triangleleft H$.

Solution:

It is enough to check that for every $h \in H$ one has $h \phi(N) h^{-1} \subseteq \phi(N)$. As ϕ is surjective, for every $h \in H$ there exists $g_{h} \in G$ such that $\phi\left(g_{h}\right)=h$. Then for each $x=\phi(n) \in \phi(N)$, where $n \in N$, we have

$$
h \phi(n) h^{-1}=\phi\left(g_{h}\right) \phi(n) \phi\left(g_{h}\right)^{-1}=\phi\left(g_{h} n g_{h}^{-1}\right),
$$

where the last equality comes from the fact that ϕ is a group homomorphism. Then since $N \triangleleft G$ and $n \in N$, we have that $g_{h} n g_{h}^{-1} \in N$, implying that $h \phi(n) h^{-1}=$ $\phi\left(g_{h} n g_{h}^{-1}\right) \in \phi(N)$. We can then conclude that $h \phi(N) h^{-1} \subseteq \phi(N)$ for each $h \in H$, and $\phi(N) \triangleleft H$.
2. Let $\varphi: G \longrightarrow H$ be a set-theoretic map between groups. Show that φ is a homomorphism if and only if the graph

$$
\Gamma_{\varphi}=\{(x, y) \in G \times H \mid y=\varphi(x)\}
$$

is a subgroup of $G \times H$. When is it a normal subgroup?

Solution:

Of course $\left(1_{G}, \phi\left(1_{H}\right)\right) \in \Gamma_{\phi}$, so that Γ_{ϕ} is never empty. Each element of Γ_{ϕ} is of the form $(u, \phi(u))$, for $u \in G$. Now Γ_{ϕ} is a subgroup of $G \times H$ if and only if for each $\alpha, \beta \in \Gamma_{\phi}$ one has $\alpha \beta^{-1} \in \Gamma_{\phi}$. Writing down $\alpha=(u, \phi(u))$ and $\beta=(v, \phi(v))$, we have that $\Gamma_{\phi} \leq G \times H$ if and only if $\left(u v^{-1}, \phi(u) \phi(v)^{-1}\right) \in \Gamma_{\phi}$ for each $u, v \in G$, which is equivalent to saying that

$$
(*) \phi\left(u v^{-1}\right)=\phi(u) \phi(v)^{-1}, \quad \forall u, v \in G .
$$

This last property is satisfied when ϕ is a group homomorphism, so we are only left to prove that $(*)$ implies that ϕ is a group homomorphism. Applying ($*$) with $u=$ $v=1$, we get $\phi(1)=1$. Then applying $(*)$ with $u=1$, we get that $\phi\left(v^{-1}\right)=$ $\phi(v)^{-1}$ for each $v \in G$. Finally, applying (*) with $v=w^{-1}$, we can conclude that
$\phi(u w)=\phi(u) \phi\left(w^{-1}\right)^{-1}=\phi(u) \phi(w)$ for each $u, w \in G$, meaning that ϕ is a group homomorphism.

We now want to characterize when $\Gamma_{\phi} \triangleleft G \times H$. This happens if and only if Γ_{ϕ} is stable under conjugation by elements of $G \times H$, that is, if and only if

$$
\forall u, g \in G, \forall h \in H,\left(g u g^{-1}, h \phi(u) h^{-1}\right) \in \Gamma_{\phi} .
$$

This last condition is equivalent to saying that, for u, g and h as above, one has $\phi\left(g u g^{-1}\right)=h \phi(u) h^{-1}$, i.e., assuming that ϕ is a group homomorphism (which is a necessary condition), $\phi(u)=\phi(g)^{-1} h \phi(u)\left(\phi(g)^{-1} h\right)^{-1}$. Since $\phi(g)^{-1} h$ ranges over all the elements of H, we can say that $\Gamma_{\phi} \triangleleft G \times H$ if and only if

$$
\forall u \in G, \forall h \in H, \phi(u)=h \phi(u) h^{-1} .
$$

This last condition is equivalent to saying that $\phi(G) \subseteq Z(H)$. We can conclude that $\Gamma_{\phi} \triangleleft G \times H$ if and only if ϕ is a group homomorphism whose image lies in the center of H.
3. Let G_{1} and G_{2} be two groups, and let $G=G_{1} \times G_{2}$ be their direct product. Let H be a subgroup of G. We denote by $\pi_{i}: G \longrightarrow G_{i}$ the two projection maps to the factors of G, and by $K_{i}<H$ the kernel of the restriction of π_{i} to H. We assume that the restrictions of π_{1} and π_{2} to H are both surjective.

1. Show that π_{1} induces by restriction an isomorphism $K_{2} \longrightarrow N_{1}$ where N_{1} is a normal subgroup of G_{1}.
2. Show that if $N_{1}=G_{1}$, then $H=G_{1} \times G_{2}$.
3. Suppose in addition that G_{1} and G_{2} are simple groups. If $N_{1}=\{1\}$, show that $K_{1}=\{1\}$ as well. Show in that case that H is the graph of an isomorphism $G_{1} \longrightarrow G_{2}$.

Solution:

1. Let $\pi_{i}^{\prime}:=\left.\pi_{i}\right|_{H}: H \longrightarrow G_{i}$, so that $K_{i}=\operatorname{ker}\left(\pi_{i}^{\prime}\right)=\operatorname{ker}\left(\pi_{i}\right) \cap H$. Since π_{1}^{\prime} is a surjective map and $K_{2}=\operatorname{ker}\left(\pi_{2}^{\prime}\right)$ is a normal subgroup of H, we have that $N_{1}:=\pi_{1}\left(K_{2}\right)=\pi_{1}^{\prime}\left(K_{2}\right)$ is a normal subgroup of G_{1} by Exercise 1. Then π_{1}^{\prime} restricts to a surjective map $K_{2} \longrightarrow N_{1}$, whose kernel is $\operatorname{ker}\left(\pi_{1}^{\prime}\right) \cap K_{2}$. This intersection lies in $\operatorname{ker}\left(\pi_{1}\right) \cap \operatorname{ker}\left(\pi_{2}\right)$, which is easily seen to be trivial by writing down the element of G as couples of elements in G_{1} and G_{2}. Thus π_{1} restricts to an isomorphism $K_{2} \longrightarrow N_{1}$ as desired.
2. If $G_{1}=N_{1}=\pi_{1}\left(K_{2}\right)$, then $(\lambda, 1) \in H$ for each $\lambda \in G_{1}$. Also, by surjectivity of π_{2}, for each $\mu \in G_{2}$ there exists $\lambda_{\mu} \in G_{1}$ such $\left(\lambda_{\mu}, \mu\right) \in H$, so that $(1, \mu)=\left(\lambda_{\mu}, \mu\right)$. $\left(\lambda_{\mu}^{-1}, 1\right) \in H$. In conclusion, for $g_{i} \in G_{i}$, we have $\left(g_{1}, g_{2}\right)=\left(g_{1}, 1\right) \cdot\left(1, g_{2}\right) \in H$, meaning that $H=G_{1} \times G_{2}$.
3. If $N_{1}=\{1\}$, then by Point 1 we have $K_{2}=1$. Interchanging the indexes 1 and 2 in Point 1, one easily proves that π_{2} restricts to an isomorphism $K_{1} \longrightarrow N_{2}:=\pi_{2}\left(K_{1}\right)$ with $N_{2} \triangleleft G_{2}$. As G_{2} is simple, there are only possibilities: either $N_{2}=G_{2}$ or $N_{2}=\{1\}$. In the first case one gets, similarly as in Point 2 , that $H=G_{1} \times G_{2}$, so that $K_{2}=G_{1} \times\{1\} \neq\{1\}$ (as $G_{1} \neq\{1\}$ because it is simple), contradiction. Hence $N_{2}=K_{1}=\{1\}$.
Now we prove that $H \subseteq G_{1} \times G_{2}$ is a graph of a map $\phi: G_{1} \longrightarrow G_{2}$. This is equivalent to say that if $\left(g_{1}, g_{2}\right),\left(g_{1}, g_{2}\right) \in H$ for $g_{1} \in G_{2}$ and $g_{2}, g_{2}^{\prime} \in G_{2}$, then $g_{2}=g_{2}^{\prime}$. This implication is true since, the first condition implies $\left(1, g_{2}^{-1} g_{2}^{\prime}\right) \in H$, so that $g_{2}^{-1} g_{2}^{\prime}=1$ (and $g_{2}=g_{2}^{\prime}$) because $K_{1}=\{1\}$.
Then ϕ is a group homomorphism because $H \leq G_{1} \times G_{2}$ (see Exercise 2). ϕ is surjective because π_{2}^{\prime} is. Moreover, $\operatorname{ker}(\phi)=\left\{g \in G_{1}:(g, 1) \in H\right\}=\{1\}$ since $K_{2}=\{1\}$. Hence ϕ is a bijective, implying that it is a group isomorphism.

[Rings]

4. Let A be an integral domain and K its fraction field. Show that if B is any ring, then there is a "natural" bijection

$$
\begin{aligned}
& \text { \{ring morphisms } \psi: K \longrightarrow B\} \longrightarrow \\
& \left.\qquad \text { ring morphisms } \varphi: A \longrightarrow B \text { such that } \varphi(x) \in B^{\times} \text {for all } x \neq 0 \text { in } A\right\} .
\end{aligned}
$$

Solution:

Let

$$
\begin{aligned}
& X=\{\text { ring morphisms } \psi: K \longrightarrow B\} \text { and } \\
& Y=\left\{\text { ring morphisms } \varphi: A \longrightarrow B \text { such that } \varphi(x) \in B^{\times} \text {for all } x \neq 0 \text { in } A\right\} .
\end{aligned}
$$

Consider the canonical embedding $j: A \longrightarrow K$, with $j(a)=\frac{a}{1}$. Then we define $\varrho: X \longrightarrow Y$ as the restriction map sending $\left.\psi \mapsto \psi\right|_{A}=\psi \circ j$. We have that ϱ is a map because for every $\psi \in X$ the map $\psi \circ j$ is a ring morphism (being a composition of ring morphisms), and for $x \in A \backslash\{0\}$ it gives $\psi(x) \psi\left(\frac{1}{x}\right)=1$ in B, so that $\psi(x) \in B^{\times}$.

Let us now prove that ϱ is a bijection:

- ϱ is injective: let $\psi, \psi^{\prime} \in X$, and suppose that $\varrho(\psi)=\varrho\left(\psi^{\prime}\right)$. This means that $\left.\psi\right|_{A}=\left.\psi^{\prime}\right|_{A}$. Then for each $a, c \in A$, with $c \neq 0$, we get

$$
\psi\left(\frac{a}{c}\right)=\psi(a) \psi(c)^{-1}=\psi^{\prime}(a) \psi^{\prime}(c)^{-1}=\psi^{\prime}\left(\frac{a}{c}\right),
$$

so that $\psi=\psi^{\prime}$.

- ϱ is surjective: we just need to prove that each map $\phi: A \longrightarrow B$ such that $\phi(x) \in B^{\times}$for all $x \neq 0$ does admit an extension $\psi: K \longrightarrow B$ such that $\left.\psi\right|_{A}=\phi$. This is easily done by defining $\psi\left(\frac{a}{c}\right):=\phi(a) \phi(c)^{-1}$ for each $a, c \in A$ with $c \neq 0$. The map ψ is well-defined: suppose that $\frac{a}{c}=\frac{a^{\prime}}{c^{\prime}}$ with $c, c^{\prime} \neq 0$, so that $a c^{\prime}=a^{\prime} c$; then $\phi(c), \phi\left(c^{\prime}\right) \in B^{\times}$, and

$$
\phi\left(c c^{\prime}\right)\left(\phi(a) \phi(c)^{-1}-\phi\left(a^{\prime}\right) \phi\left(c^{\prime}\right)^{-1}\right)=\phi(a) \phi\left(c^{\prime}\right)-\phi\left(a^{\prime}\right) \phi(c)=\phi\left(a c^{\prime}-a^{\prime} c\right)=0
$$

and being $\phi\left(c c^{\prime}\right) \in B^{\times}$we get $\phi(a) \phi(c)^{-1}=\phi\left(a^{\prime}\right) \phi\left(c^{\prime}\right)^{-1}$. Also, ψ is a ring morphism: $\psi(1)=1$, and for $a, a^{\prime}, c, c^{\prime} \in A$ with $c, c^{\prime} \neq 0$ we obtain

$$
\begin{aligned}
\psi\left(\frac{a}{c}+\frac{a^{\prime}}{c^{\prime}}\right) & =\psi\left(\frac{a c^{\prime}+a^{\prime} c}{c c^{\prime}}\right)=\varphi\left(a c^{\prime}+a^{\prime} c\right) \varphi\left(c c^{\prime}\right)^{-1}= \\
& =\varphi(a) \varphi(c)^{-1}+\varphi\left(a^{\prime}\right) \varphi\left(c^{\prime}\right)^{-1}=\psi\left(\frac{a}{c}\right)+\psi\left(\frac{a^{\prime}}{c^{\prime}}\right) \text { and } \\
\psi\left(\frac{a}{c} \cdot \frac{a^{\prime}}{c^{\prime}}\right) & =\psi\left(\frac{a c^{\prime}+a^{\prime} c}{c c^{\prime}}\right)=\varphi\left(a a^{\prime}\right) \varphi\left(c c^{\prime}\right)^{-1}= \\
& =\varphi(a) \varphi(c)^{-1} \varphi\left(a^{\prime}\right) \varphi\left(c^{\prime}\right)^{-1}=\psi\left(\frac{a}{c}\right) \cdot \psi\left(\frac{a^{\prime}}{c^{\prime}}\right)
\end{aligned}
$$

Clearly, $\psi(a)=\psi\left(\frac{a}{1}\right)=\varphi(a) \varphi(1)^{-1}=\varphi(a)$, so that $\left.\psi\right|_{A}=\varphi$ and we have proven that ϱ is surjective.
5. Let A be an integral domain and K its fraction field. Let $I \subset A$ be a non-zero prime ideal. Denote

$$
A_{I}=\{x \in K \mid x=a / b \text { for some } a \text { and } b \text { in } A \text { with } b \notin I\}
$$

1. Show that A_{I} is a subring of K, and that $A \subset A_{I}$.

2 . Let $J=I A_{I}$ be the ideal in A_{I} generated by I. Show that

$$
J=\{x \in K \mid x=a / b \text { for some } a \in I \text { and some } b \text { in } A-I\}
$$

3. Show that J is a maximal ideal in A_{I}, and that it is the unique maximal ideal.
4. Show that the natural ring homomorphism

$$
A \longrightarrow A_{I} / J
$$

induces an injective ring homomorphism $A / I \longrightarrow A_{I} / J$.

1. First, $A_{I} \subseteq K$ by definition. I is a prime ideal, so that $I \neq A$ and $1 \notin I$. Thus for each $a \in A$, we have that $a=\frac{a}{1} \in A_{I}$, meaning that $A \subseteq A_{I}$. In particular, A_{I} contains 0 and 1. Also, for each $a / b \in A_{I}$, written with $b \notin I$, we have $-\frac{a}{b}=\frac{-a}{b} \in A_{I}$, so that we are only left to prove that A_{I} is stable under sum and multiplication. This is immediate: the denominator of a sum or multiplication of two fractions a / b and a^{\prime} / b^{\prime} can always be taken to be the product $b b^{\prime}$ of the two denominators. But for $b, b^{\prime} \notin I$, one needs to have $b b^{\prime} \notin I$ (as I is a prime ideal).
2. Let $x \in K$. If $x \in J$, then $x=m \cdot \frac{u}{b}=\frac{m u}{b}$ for some $m \in I, u \in A$ and $b \in A \backslash I$. Of course, $m u \in I$, so that $x=\frac{a}{b}$ with $a=m u \in I$ and $b \in A \backslash I$. Clearly, each x of this form $\frac{a}{b}$ can also be written as $a \cdot \frac{1}{b} \in J$, whence the desired description

$$
J=\{x \in K \mid x=a / b \text { for some } a \in I \text { and some } b \text { in } A-I\} .
$$

3. We claim that $J=A_{I} \backslash A_{I}^{\times}$. Given the claim, each ideal J^{\prime} of A_{I} strictly containing J does contain a unit and is forced to be the unit ideal, so that J is maximal. Moreover every maximal ideal of A_{I} does not contain any unit, so that it is contained in J and has to coincide with J by maximality. So we can conclude that J is the unique maximal ideal of A_{I}. Now we prove the claim:

- $A_{I}^{\times} \cap J=\varnothing$: Suppose that $a / b \in A_{I}$, with $b \notin I$, is invertible in A_{I}. Writing $\frac{b}{a}=\frac{c}{d}$ in such a way that $d \notin I$, we get $b d=a c$. But $b d \notin I$ as I is a prime ideal, so that $a \notin I$. Now suppose that $\frac{a}{b}=\frac{e}{f}$ with $f \notin I$. The equality $a f=b e$ implies that I does not contain e (using the fact that I does not contain a, b and f and again that I is a prime ideal), so hat $\frac{a}{b} \notin J$.
- $A_{I}^{\times} \cup J=A_{I}$: Suppose that $\frac{a}{b} \in A_{I}$, with $b \notin I$, does not lie in J. Then we get $a \notin I$, so that $\frac{b}{a} \in A_{I}$ and $\frac{a}{b} \in A_{I}^{\times}$.
This proves that J consists of all non-units, which was our initial claim.

4. We claim that the natural ring homomorphism $p: A \longrightarrow A_{I} / J$ sending $a \mapsto \frac{a}{1}+J$ has kernel equal to I. Then, by the First Isomorphism Theorem for ring homomorphisms, p induces injective ring homomorphism $\bar{p}: A / I \longrightarrow A_{I} / J$ sending $a+I \mapsto p(a)$. To conclude, we show that indeed $\operatorname{ker}(p)=I$. For $a \in A$, we have that $a \in \operatorname{ker}(p)$ if and only if $\frac{a}{1} \in J$, which is equivalent to saying that $\frac{a}{1}=\frac{s}{t}$, for some $s \in I$ and $t \notin I$. This last equality is equivalent to $a t=s$, and this condition is the same to asking that $a \in I$, because I is a prime ideal which is asked to contain s but not t. From this we get $I=\operatorname{ker}(p)$.
5. Let $n \geq 1$ and let A be a real matrix of size $n \times n$ with integral coefficients.
6. Show that

$$
\Phi:\left\{\begin{array}{l}
\mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n} \\
x \mapsto A x
\end{array}\right.
$$

is a well-defined, \mathbb{Z}-linear map.
2. Show that $\operatorname{ker} \Phi$ and $\operatorname{Im}(\Phi)$ are finitely-generated \mathbb{Z}-modules. Are they free \mathbb{Z} modules?
3. Show that $\operatorname{det}(A) \neq 0$ if and only if $\operatorname{Im}(\Phi)$ has finite index in \mathbb{Z}^{n}. Show with an example that Φ is not necessarily surjective.
4. Assume $\operatorname{det}(A) \neq 0$. Try to guess what is the cardinality of the finite set $\mathbb{Z}^{n} / \operatorname{Im}(\Phi)$, as a function of A (and try to prove that this guess is correct...)

Solution:

1. The map Φ is well-defined because for each $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ and $A=\left(a_{i j}\right) \in$ $M_{n}(\mathbb{Z})$ the components of $A x$ are integral, as they are obtained by multiplying and summing integer numbers. Linearity is immediately checked as in classical linear algebra (the fact that \mathbb{Z} is not a field is not a problem).
2. Since \mathbb{Z} is a PID and \mathbb{Z}^{n} is a free \mathbb{Z}-module of rank n, we know that its submodules $\operatorname{ker} \Phi$ and $\operatorname{Im}(\Phi)$ are both free \mathbb{Z}-modules of rank $\leq n$, by Proposition 2 from the Note on finitely-generated modules over a principal ideal domain. In particular, both $\operatorname{ker} \Phi$ and $\operatorname{Im}(\Phi)$ are finitely generated and free \mathbb{Z}-modules.
3. We have that $\operatorname{Im}(\Phi)$ has finite index in \mathbb{Z}^{n} if and only if the finitely generated \mathbb{Z}-module $\mathbb{Z}^{n} / \operatorname{Im}(\Phi)$ has rank 0 , i.e. $\operatorname{Im}(\Phi)$ has rank n.
Let $\Phi_{\mathbb{Q}}: \mathbb{Q}^{n} \longrightarrow \mathbb{Q}^{n}$ be the \mathbb{Q}-linear map sending $x \mapsto A x$. We have that $\operatorname{det}(A) \neq 0$ if and only if the images via $\Phi_{\mathbb{Q}}$ of the vectors of the canonical basis of $\mathbb{Z}^{n} \subseteq \mathbb{Q}^{n}$ are \mathbb{Q}-linear independent in \mathbb{Q}^{n}. In particular, if $\operatorname{det}(A) \neq 0$, then the images via Φ of the vectors of the canonical basis of \mathbb{Z}^{n} are \mathbb{Z}-linear independent, so that $\operatorname{Im}(\Phi)$ is a free \mathbb{Z}-module of rank n.
Conversely, suppose that $\operatorname{Im}(\Phi)$ has \mathbb{Z}-rank n. A free \mathbb{Z}-basis for $\operatorname{Im}(\Phi)$ consists of \mathbb{Q}-linear independent vectors in \mathbb{Q}^{n} (since each \mathbb{Q}-linear combination is a positive multiple of a \mathbb{Z}-linear combination), and since $\operatorname{Im}(\Phi) \subseteq \operatorname{Im}\left(\Phi_{\mathbb{Q}}\right)$, the map $\Phi_{\mathbb{Q}}$ needs to be surjective. This implies that $\operatorname{det}(A) \neq 0$.
The map Φ is not surjective even if $\operatorname{det}(A) \neq 0$. For instance, take $A=\operatorname{diag}(2,1, \ldots, 1)$. Then $\operatorname{det}(A)=2 \neq 0$, but $(1,0, \ldots, 0) \notin \operatorname{Im}(\Phi)$.
4. If $n=1$ and $A=(\lambda) \in \mathbb{Z}$, then $\mathbb{Z}^{n} / \operatorname{Im}(\Phi)=\mathbb{Z} / a \mathbb{Z}$ has cardinality equal to $|a|$. For arbitrary n, if $\operatorname{det}(A)= \pm 1$, then A^{-1} is invertible in $M_{n}(\mathbb{Z})$, and so is the map Φ, so that $\mathbb{Z}^{n} / \operatorname{Im}(\Phi)=1$. A good guess for the cardinality of $\mathbb{Z}^{n} / \operatorname{Im}(\Phi)$ seems then to be $|\operatorname{det}(A)|$.
The correctness of this guess can be easily checked for upper triangular matrices. If $A=\left(a_{i, j}\right)$ is upper triangular (i.e., $a_{i j}=0$ for $i>j$), then the image of Φ is

$$
\operatorname{Im}(\Phi)=\left\langle\left(b_{1}, \ldots, b_{n}\right)\right\rangle \leq \mathbb{Z}^{n}
$$

where $b_{j}:=\left(a_{1 j}, a_{2 j}, \ldots, a_{n j}\right)=\left(a_{1 j}, a_{2 j}, \ldots, a_{j j}, 0 \ldots, 0\right)$ for each $1 \leq j \leq n$. In this case, we want to prove the claim that $\left|\mathbb{Z}^{n} / \operatorname{Im}(\Phi)\right|=|\operatorname{det}(A)|=\prod_{j=1}^{n}\left|a_{j j}\right|$. Notice that both the image of Φ and the absolute value of $\operatorname{det}(A)$ do not change if we change the sign to the entries in some columns of A, so that without loss of generality we may assume that $a_{i i}>0$ (they cannot be zero as $\operatorname{det}(A) \neq 0$). Let $I=\operatorname{Im}(\Phi)$ and take $s=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{Z}^{n}$. By adding a suitable multiple of b_{n} to s, we get have that $s+I=s^{\prime}+I$ for some $s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}, u_{n}\right)+I$, where $0 \leq u_{n} \leq a_{n n}$. Repeating this argument (i.e., adding suitable multiples of $b_{n-1}, b_{n-2}, \ldots, b_{1}$ to $\left.s^{\prime}\right)$, we can say that $s+I=\left(u_{1}, \ldots, u_{n}\right)+I$, for some $1 \leq u_{j} \leq a_{j j}$. This proves that $\left|\mathbb{Z}^{n} / \operatorname{Im}(\Phi)\right| \leq \operatorname{det}(A)$. Now we have to prove that those representatives $\left(u_{1}, \ldots, u_{n}\right)$, where $1 \leq u_{j} \leq a_{j j}$, do not coincide modulo $\operatorname{Im}(\Phi)$. Suppose that $\left(u_{1}, \ldots, u_{n}\right)+\operatorname{Im}(\Phi)=\left(u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)+\operatorname{Im}(\Phi)$ for some $0 \leq u_{j}, u_{j}^{\prime}<a_{j j}$. Let $u=\left(u_{1}, \ldots, u_{n}\right)$ and $u^{\prime}=\left(u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)$, and write $u-u^{\prime}=\sum_{j=1}^{n} \lambda_{j} b_{j}$ with $\lambda_{j} \in \mathbb{Z}$. Suppose by contradiction that $u_{k} \neq u_{k}^{\prime}$ for some k, and take this k to be maximal. Then for $h>k$ we have $0=u_{h}-u_{h}^{\prime}=\sum_{j=1}^{n} \lambda_{j} a_{h j}=\sum_{j=h}^{n} \lambda_{j} a_{h j}$ and this can be
used to prove that $\lambda_{h}=0$ for $h>k$. Indeed, if $\lambda_{l} \neq 0$ for some maximal $l>k$, then $\lambda_{l+1}, \ldots, \lambda_{n}$ would all be zero and $0=u_{l}-u_{l}^{\prime}=\lambda_{l} a_{l l}$, contradiction with $\lambda_{l} \neq 0$. So, assuming by contradiction that $u_{k} \neq u_{k}^{\prime}$ with k maximal, we have that $\lambda_{h}=0$ for $h>k$. Then $u_{k}-u_{k}^{\prime}=\sum_{j=k}^{n} \lambda_{j} a_{k j}=\lambda_{k} a_{k k}$, so that u_{k} and u_{k}^{\prime} differ by a multiple of $a_{k k}$. But $0 \leq u_{k}, u_{k}^{\prime}<a_{k k}$ implies that $\left|u_{k}-u_{k}^{\prime}\right|<a_{k k}$, so that the only possibility is $u_{k}=u_{k}^{\prime}$, contradiction. This proves that vectors $\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{Z}^{n}$, with $0 \leq u_{j}<a_{j j}$, parametrize distinct classes modulo $\operatorname{Im}(\Phi)$ of \mathbb{Z}^{n}, so that $\left|\mathbb{Z}^{n} / \operatorname{Im}(\Phi)\right|=|\operatorname{det}(A)|$ when A is a upper triangular matrix.
For the general case, one can use the fact that for each matrix $A \in M_{n}(\mathbb{Z})$ one can write $A=V U W$, for $V, W \in \mathrm{SL}_{n}(\mathbb{Z})$ and U an upper triangular matrix in $M_{n}(\mathbb{Z})$. Then $|\operatorname{det}(A)|=|\operatorname{det}(U)|$, and the map $\Phi_{V}: \mathbb{Z}^{n} \longrightarrow \mathbb{Z}^{n}$ associated to V is an automorphism of \mathbb{Z}^{n} sending $\operatorname{Im}(U)=\operatorname{Im}(U W)$ to $\operatorname{Im}(A)$, so that $\left[\mathbb{Z}^{n}: \operatorname{Im}(U)\right]=\left[\mathbb{Z}^{n}: \operatorname{Im}(A)\right]$.

[Fields]

7. Let K be a field and $L=K(T)$ the field of rational functions with coefficients in K. If $x \in L$ is algebraic over K, show that $x \in K$.

Solution: Write $x=\frac{f}{g}$, where $f, g \in K[T]$ are coprime polynomials and $g \neq 0$. If x is algebraic over K, there exists a monic polinomial $p(X) \in K[X]$ such that $p(x)=0$. By multiplying this equality by g^{n}, where $n:=\operatorname{deg}(p)$, and writing $p(X)=$ $X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}$, we get
(*) $f^{n}+a_{n-1} f^{n-1} g+\cdots+a_{1} f g^{n-1}+a_{0} g^{n}=0$,
which implies that $g \mid f^{n}$. This implies that $g \in K$, because if g were non-constant, then any irreducible factor of g would divide f, in contradiction with the fact that g is coprime with f. Hence g is invertible, and the equality (*) implies that $f \mid a_{0}$, so that f is a constant polynomial as well and $x \in K$.
8. Let $K=\mathbb{F}_{p}$ where p is a prime number and let L / K be a finite extension. Denote by $\varphi: L \longrightarrow L$ the Frobenius morphism.

1. Show that the trace map $\operatorname{tr}_{L / K}: L \longrightarrow K$, as defined in Exercise 1 of Sheet 12, is non-zero (Hint: estimate the size of the kernel of $\operatorname{tr}_{L / K}$.) Deduce that it is surjective.
2. Show also that the norm map $N_{L / K}: L^{\times} \longrightarrow K^{\times}$is surjective.
3. Show that

$$
\operatorname{ker}\left(\operatorname{tr}_{L / K}\right)=\{x \in L \mid x=\varphi(y)-y \text { for some } y \in L\}
$$

and that

$$
\operatorname{ker}\left(N_{L / K}\right)=\left\{x \in L \left\lvert\, x=\frac{\varphi(y)}{y}\right. \text { for some } y \in L^{\times}\right\} .
$$

Solution:

1. Let $n=[L: K]$. Then $\operatorname{ker}\left(\operatorname{tr}_{L / K}\right)$ is the set of roots of the polynomial $f=$ $\sum_{j=0}^{n-1} X^{p^{j}} \in L[X]$, so that $\left|\operatorname{ker}\left(\operatorname{tr}_{L / K}\right)\right| \leq \operatorname{deg}(f)=p^{n-1}<p^{n}=|L|$ and $\operatorname{tr}_{L / K}$ is non-zero. Since this map is non-zero and K-linear, its image is a non-zero K-linear subspace of K, and the only possibility is that $\operatorname{Im}\left(\operatorname{tr}_{L / K}\right)=K$.
2. Let x be a multiplicative generator of L^{\times}. Then x has order $p^{n}-1$ in L^{\times}. Now

$$
N_{L / K}(x)=\prod_{j=0}^{n-1} x^{p^{j}}=x^{\sum_{j=0}^{n-1} p^{j}}=x^{\frac{p^{n}-1}{p-1}}
$$

is an element of K^{\times}which has order $p-1$ in L^{\times}. Since the norm map is a group homomorphism $L^{\times} \longrightarrow K^{\times}$, the subgroup generated by $N_{L / K}(x)$, whose cardinality is $p-1$, is contained in the image of $N_{L / K}$. But $\left|K^{\times}\right|=p-1$, so that $N_{L / K}$ is surjective.
3. Since $\operatorname{tr}_{L / K}$ is surjective, by the First Isomorphism Theorem for groups we have an isomorphism of additive groups $K \cong L / \operatorname{ker}\left(\operatorname{tr}_{L / K}\right)$. Then $\left|\operatorname{ker}\left(\operatorname{tr}_{L / K}\right)\right|=p^{n-1}$. We want to prove that $\operatorname{ker}\left(\operatorname{tr}_{L / K}\right)=\operatorname{Im}\left(\phi-\mathrm{id}_{L}\right)$, where $\phi-\mathrm{id}_{L}$ is clearly a $K-$ linear map $L \longrightarrow L$. First, we prove the containment " \supseteq ". Writing $\operatorname{tr}_{L / K}$ as $\operatorname{tr}_{L / K}=\sum_{j=0}^{n-1} \phi^{j}$, and using the fact that we saw in class that $\phi^{n}=\mathrm{id}_{L}$, we get

$$
\operatorname{tr}_{L / K} \circ\left(\phi-\mathrm{id}_{L}\right)=\sum_{j=0}^{n-1} \phi^{j+1}-\sum_{j=0}^{n-1} \phi^{j}=\phi^{n}-\mathrm{id}_{L}=0,
$$

so that $\operatorname{Im}\left(\phi-\mathrm{id}_{L}\right) \subseteq \operatorname{ker}\left(\operatorname{tr}_{L / K}\right)$. In order to get an equality of the two sets, it is enough to show that $\left|\operatorname{Im}\left(\phi-\mathrm{id}_{L}\right)\right|=p^{n-1}$. As $\phi-\mathrm{id}_{L}$ is linear and has kernel equal to \mathbb{F}_{p}, First Isomorphism Theorem for groups gives

$$
\left|\operatorname{Im}\left(\phi-\operatorname{id}_{L}\right)\right|=|L| /\left|\operatorname{ker}\left(\phi-\operatorname{id}_{L}\right)\right|=p^{n-1},
$$

and we can conclude that

$$
\operatorname{ker}\left(\operatorname{tr}_{L / K}\right)=\{x \in L \mid x=\varphi(y)-y \text { for some } y \in L\}
$$

We use a similar argument to describe the kernel of the norm map. First, notice that $\beta: y \mapsto \frac{\phi(y)}{y}=y^{p-1}$ is a group map $L^{\times} \longrightarrow L^{\times}$. We claim that $\operatorname{ker}\left(N_{L / K}\right)=$ $\operatorname{Im}(\beta)$. By multiplicativity of the norm, for each $y \in L^{\times}$we have

$$
N_{L / K}(\beta(y))=N_{L / K}\left(y^{p-1}\right)=N_{L / K}(y)^{p-1}=1,
$$

since $N_{L / K}(y) \in K^{\times}$. Hence $\operatorname{ker}\left(N_{L / K}\right) \supseteq \operatorname{Im}(\beta)$, and to prove equality we just check that the cardinalities coincide. We have $\left|\operatorname{ker}\left(N_{L / K}\right)\right|=\frac{p^{n}-1}{p-1}$ by the First Isomorphism Theorem for groups, and since $\operatorname{ker}(\beta)=K^{\times}$, the same theorem gives $|\operatorname{Im}(\beta)|=\frac{p^{n}-1}{p-1}$ as well. We can then conclude that

$$
\operatorname{ker}\left(N_{L / K}\right)=\left\{x \in L \left\lvert\, x=\frac{\varphi(y)}{y}\right. \text { for some } y \in L^{\times}\right\}
$$

9. Let K be a finite field, \bar{K} an algebraic closure of K. Let $x \in \bar{K}$ be any element, and $P=\operatorname{Irr}(x, K)$ the minimal irreducible polynomial of x in $K[X]$. Let $\left(x_{1}, \ldots, x_{d}\right)$ be the distinct roots of P in \bar{K}. Prove that

$$
\prod_{\substack{1 \leq i, j \leq d \\ i \neq j}}\left(x_{i}-x_{j}\right)^{2} \in K
$$

Solution:

Let $\gamma=\prod_{\substack{1 \leq i, j \leq d \\ i \neq j}}\left(x_{i}-x_{j}\right)^{2}$. To prove that γ lies in K, it is enough to check that $\phi(\gamma)=\gamma$, where $\phi: x \mapsto x^{p}$ is the Frobenius endomorphism of \bar{K}. Suppose that $y \in \bar{K}$ is a root of P. Then $\phi(y)=y^{p}$ is also a root, since $P(\phi(y))=\phi(P(y))=0$. Hence ϕ restricts to a map $\phi^{\prime}:\left\{x_{1}, \ldots, x_{d}\right\} \longrightarrow\left\{x_{1}, \ldots, x_{d}\right\}$. Since ϕ is injective, ϕ^{\prime} is injective as well, so that it is a bijection of the set $\left\{x_{1}, \ldots, x_{d}\right\}$. Then

$$
\phi(\gamma)=\phi\left(\prod_{\substack{1 \leq i, j \leq d \\ i \neq j}}\left(x_{i}-x_{j}\right)^{2}\right)=\prod_{\substack{1 \leq i, j \leq d \\ i \neq j}}\left(\phi\left(x_{i}\right)-\phi\left(x_{j}\right)\right)^{2}=\prod_{\substack{1 \leq i, j \leq d \\ i \neq j}}\left(x_{i}-x_{j}\right)^{2}=\gamma,
$$

where in the third equality we have used the fact that ϕ permutes the x_{i} 's, and that γ is stable under permuting the x_{i} 's, since the indexes in the product range on all values $1 \leq i, j \leq d$.

