Solutions of exercise sheet 1

1. Let (G, \cdot) be a group. We say that G is abelian if $\forall x, y \in G, x \cdot y=y \cdot x$. For $g \in G$ we define the order of g, which we denote $\operatorname{ord}_{G}(g)$, as the minimal positive integer n such that $g^{n}=1_{G}$, if such n exists. Else we say that g has infinite order. Prove the following statements for a group G :
2. If $e \in G$ is s.t. $\forall x \in G, e \cdot x=x$, then $e=1_{G}$.
3. G is abelian if and only if the inversion map $G \rightarrow G, x \mapsto x^{-1}$ is a group homomorphism.
4. If $g^{2}=1_{G}$ for every $g \in G$, then G is abelian.
5. If $g \in G$ has finite order, g^{-1} is a power of g.
6. If G is finite, every $g \in G$ has finite order.

Solution:

1. Suppose that for all $x \in G$ we have $e \cdot x=x$. Applying this for $x=1_{G}$ we get $e=e \cdot 1_{G}=1_{G}$.
2. We have that G is abelian if and only if $x y=y x$ for all $x, y \in G$, if and only if $x y x^{-1} y^{-1}=1_{G}$ for all $x, y \in G$, if and only if $x^{-1} y^{-1}=y^{-1} x^{-1}$ for all $x, y \in G$. Being $(x y)^{-1}=y^{-1} x^{-1}$, the last statement is equivalent to saying that $x^{-1} y^{-1}=$ $(x y)^{-1}$ for all $x, y \in G$, that is, that the inversion respects multiplication. Hence G is abelian if and only if the inversion map is a group homomorphism.
3. $g^{2}=1_{G}$ means $g=g^{-1}$, and this situation occurs for all $g \in G$ if and only if the inversion coincides with the identity, in which case it is a group homomorphism and by previous point G is abelian.
4. If $g \in G$ has finite order, then there exists $n>0$ such that $g^{n}=1_{G}$. Then $g^{n-1} g=1_{G}$, so that $g^{n-1}=g^{-1}$ and the inverse of g is a power of g.
5. Let $g \in G$ and consider the map $\beta_{g}: \mathbb{N} \rightarrow G$ sending $n \mapsto g^{n}$. If G is finite, then β_{g} cannot be injective. Hence there exists two natural numbers $m<n$ such that $g^{m}=g^{n}$. Multiplying by g^{-m} gives $g^{n-m}=1$, and being $n-m>0$ we get that g has finite order.
6. We will here consider monoids, which are defined in the same way as groups, but without inversion map. More precisely, a monoid consists of a set S together with a map $-\cdot-: G \times G \rightarrow G$ and a distinguished element $1_{S} \in S$ satisfying the following axioms:

- $\forall x, y, z \in S,(x \cdot y) \cdot z=x \cdot(y \cdot z)$
- $\forall x \in S, 1_{S} \cdot x=x \cdot 1_{S}=x$

We say that $y \in S$ is a left (resp., right) inverse of $x \in S$ if $y \cdot x=1_{S}\left(\right.$ resp., $\left.x \cdot y=1_{S}\right)$.
Let X be a non-empty set and consider the set of functions $\operatorname{End}(X)=\{f: X \rightarrow X\}$.

1. Prove that $\operatorname{End}(X)$, together with the composition of functions \circ, is a monoid for every set X.
2. Prove that $f \in \operatorname{End}(X)$ has a left (resp., right) inverse if and only if f is injective (resp., surjective).
3. For which sets X does there exist $f \in \operatorname{End}(X)$ which has a left inverse but no right inverse?
[You can use this formulation of the axiom of choice: Let $\left\{X_{i}\right\}_{i \in I}$ be a family of nonempty sets indexed by $I \neq \varnothing$. Then there exists a family $\left\{x_{i}\right\}_{i \in I}$ such that $\left.x_{i} \in X_{i}\right]$

Solution:

1. It is easy to check associativity by assuming $f, g, h \in \operatorname{End}(X)$ and comparing the functions $(f \circ g) \circ h$ and $f \circ(g \circ h)$ on each element $x \in X$. Both of them map indeed $x \mapsto f(g(h(x)))$. Hence they are the same function. Moreover, it is clear that composing a function f with the identity $\operatorname{id}_{X}: x \mapsto x$ we get again f, so that $\mathrm{id}_{X}=1_{\operatorname{End}(X)}$.
2. Suppose $f \in \operatorname{End}(X)$ has a left inverse $g: X \rightarrow X$, i.e. $g \circ f=\operatorname{id}_{X}$. Then if $f(x)=f(y)$ for $x, y \in X$, we get $x=g(f(x))=g(f(y))=y$, proving injectivity of f. Now suppose that f has a right inverse $h: X \rightarrow X$, i.e. $f \circ h=\mathrm{id}_{X}$. Then for each $x \in X$, we have that $x=f(h(x))$, proving surjectivity of f. So we have proved the "only if" part, and we are left to construct left and right inverses.
If $f: X \rightarrow X$ is injective, then we can can pick $x_{0} \in X$ and define a function $g: X \rightarrow X$ sending $f(x) \mapsto x$ and $X \backslash f(X) \ni y \mapsto x_{0}$. This is a well-defined action by injectivity of f, and for all $x \in X$ we have $g(f(x))=x$ by definition, so that g is a left inverse of g.
If $f: X \rightarrow X$ is surjective, we can use axiom of choice (as stated in the exercise), with $I:=X \neq \varnothing$ and $X_{y}=f^{-1}(y) \neq \varnothing$. Considering the resulting family $\left\{x_{y}\right\}_{y \in X}$ we can define $h: X \rightarrow X$ via $h(y)=x_{y}$. Then we obtain, $\forall y \in X$, $f(h(y))=f\left(x_{y}\right)=y$, meaning that h is a right inverse of f.
3. The situation in which there is a function with left inverse but without any right inverse occurs precisely when X is infinite. Via the axiom of choice, one can prove that a set X is infinite if it is Dedekind infinite, that is, there exists a proper subset X^{\prime} such that $|X|=\left|X^{\prime}\right|$, say via $\phi: X \rightarrow X^{\prime}$. Then ϕ can also be seen as a map $X \rightarrow X$, which by construction happens to be injective but not surjective. On the other hand, an injective map $f: X \rightarrow X$ gives a one-to-one correspondence $X \leftrightarrow \operatorname{Im}(f)$, and if f is not surjective $\operatorname{Im}(f)$ is a proper subset of X, which needs to be infinite.
4. Show that there are precisely two non-isomorphic groups of order 4 , and construct their multiplication table.

Solution:

We consider a group G with 4 distinct elements $1, a, b$ and c. Then $a \cdot b \in G$ can only be equal to 1 or $c(a b=a$ gives $b=1$, and $a b=b$ gives $a=1)$. So we can start writing down two different tables of multiplication:

$$
\text { (A) } \begin{array}{|c|cccc|}
\hline \cdot & 1 & a & b & c \\
\hline 1 & 1 & a & b & c \\
a & a & 1 & & \\
b & b & & & \\
c & c & & & \\
\hline
\end{array} \text { and }(B) \begin{array}{|c|cccc|}
\hline \cdot & 1 & a & b & c \\
\hline 1 & 1 & a & b & c \\
a & a & c & & \\
b & b & & & \\
c & c & & & \\
\hline
\end{array}
$$

Cancellation law implies that, similarly as in a Sudoku, in a single row or column we cannot get twice the same element. Using this rule on both tables and completing them in all possible ways we obtain

$$
\left.\left(A_{1}\right) \begin{array}{|l|llll}
\cdot & 1 & a & b & c \\
\hline 1 & 1 & a & b & c \\
a & a & 1 & c & b \\
b & b & c & 1 & a \\
c & c & b & a & 1
\end{array}\left|\quad\left(A_{2}\right)\right| \begin{array}{|c|cccc}
\cdot & 1 & a & b & c \\
\hline 1 & 1 & a & b & c \\
a & a & 1 & c & b \\
b & b & c & a & 1 \\
c & c & b & 1 & a
\end{array}\right] \quad \text { and } \quad(B) \begin{array}{|c|cccc|}
\hline & 1 & a & b & c \\
\hline 1 & 1 & a & b & c \\
a & a & c & 1 & b \\
b & b & 1 & c & a \\
c & c & b & a & 1 \\
c
\end{array}
$$

But the tables $\left(A_{2}\right)$ and (B) are the same up to renaming $a \mapsto c$ and $c \mapsto a$, while $\left(A_{1}\right)$ is the only one where all elements have order ≤ 2. In conclusion we have two non-isomorphic groups of order 4.
4. Consider the set $\mathbb{Z} \times \mathbb{Z}$ together with the binary operation $*$ defined by

$$
(a, h) *(b, k)=\left(a+(-1)^{h} b, h+k\right)
$$

1. Show that $(\mathbb{Z} \times \mathbb{Z}, *)$ is a group and that it is not abelian.
2. Find all elements having finite order.
3. Consider the projection maps $\pi_{1}, \pi_{2}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\pi_{1}((m, n))=m$ and $\pi_{2}((m, n))=n$. Determine if they are morphism of groups $(\mathbb{Z} \times \mathbb{Z}, *) \rightarrow(\mathbb{Z},+)$.

Solution:

1. Let us first prove that $(\mathbb{Z} \times \mathbb{Z}, *)$ is a group:

- Associativity. It is easy to check that $((a, h) *(b, k)) *(c, l)=(a, h) *((b, k) *$ $(c, l))=\left(a+(-1)^{h} b+(-1)^{h+k} c, h+k+l\right)$, for all $a, b, c, h, k, l \in \mathbb{Z}$.
- Neutral element. Solving $(e, i) *(a, h)=(a, h)$ (for all $a, h \in \mathbb{Z}$) gives $e=i=0$. Since we have $(a, h) *(0,0)=(a, h)$, we get $1_{G}=(0,0)$.
- Inverse element. Solving $(a, h) *(b, k)=(0,0)$ gives conditions $k=-h$ and $b=-(-1)^{h} a$. Such condition guarantees (b, k) to be a left inverse as well:

$$
\left(-(-1)^{h} a,-h\right) *(a, h)=\left(-(-1)^{h} a+(-1)^{-h} a, 0\right)=0
$$

since h and $-h$ have the same parity.
The fact that the group is not abelian can be checked considering $(0,1) *(1,0)=$ $(-1,1) \neq(1,1)=(1,0) *(0,1)$.
2. We denote any n-repeated multiplication by $*$ as an n-th power. With an easy induction one can show that the second entry of $(a, h)^{n}$ is $n h$, which can be zero for $n>0$ only if $h=0$. Hence elements of finite order are of the form $(a, 0)$. But the same easy induction gives $(a, 0)^{n}=(n a, 0)$, which is zero for positive n only if $a=0$. Hence 1_{G} is the only element of finite order.
3. We see that π_{1} fails to be a morphism of groups:

$$
\pi_{1}((0,1) *(1,0))=\pi_{1}((-1,1))=-1 \neq 0+1=\pi_{1}((0,1))+\pi_{1}((1,0))
$$

On the other hand, π_{2} is a morphism of groups $(\mathbb{Z} \times \mathbb{Z}, *) \rightarrow(\mathbb{Z},+)$ since for all $a, b, h, k \in \mathbb{Z}$ we have the equality:

$$
\pi_{2}((a, h) *(b, k))=\pi_{2}\left(\left(a+(-1)^{h} b, h+k\right)\right)=h+k=\pi_{2}((a, h))+\pi_{2}((b, k))
$$

5. (*) Fix an integer $n>1$ and consider the symmetric group $S_{n}:=\operatorname{Sym}(\{1, \ldots, n\})$. For $p\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ and $\sigma \in S_{n}$, define $p_{\sigma}=p\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)$. Let $f:=\prod_{1 \leq i<j \leq n}\left(X_{i}-X_{j}\right) \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.
6. Prove that for every permutation $\sigma \in S_{n}$, there exists a unique element $\alpha(\sigma) \in\{ \pm 1\}$ such that $f_{\sigma}(X)=\alpha(\sigma) f$.
7. Show that the resulting map

$$
\alpha: S_{n} \rightarrow\{ \pm 1\}
$$

is a group homomorphism.
3. Let $a \neq b$ be elements of $\{1, \ldots, n\}$, and consider the permutation $\tau \in S_{n}$ switching a and b and fixing all the other elements. Show that $\alpha(\tau)=-1$.

Solution (sketch):

1. Since each factor of f can be found once again in f_{σ}, eventually with a changed signed, we get that f_{σ} and f are the same up to a sign. This can be formalized in several ways, e.g. defining quantities $a_{i j}(\sigma):=\operatorname{sign}(\sigma(j)-\sigma(i))$, so that

$$
X_{\sigma(j)}-X_{\sigma(i)}=a_{i j}(\sigma)\left(X_{\max (\sigma(i), \sigma(j))}-X_{\min (\sigma(i), \sigma(j))}\right)
$$

and comparing the product formulas for f and f_{σ}.
2. We have $\alpha(\sigma)=f_{\sigma} / f$, and

$$
\alpha(\sigma \tau)=\frac{f_{\sigma \tau}}{f}=\frac{f_{\sigma \tau}}{f_{\sigma}} \frac{f_{\sigma}}{f}=\frac{f_{\sigma \tau}}{f_{\sigma}} \alpha(\sigma)
$$

so that we are left to prove that $f_{\sigma \tau} / f_{\sigma}=f_{\tau} / f$. To prove this, one can first show that the following equalities hold for any $p, q \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$:

- $p_{\sigma \tau}=\left(p_{\tau}\right)_{\sigma}$
- $(p q)_{\sigma}=p_{\sigma} q_{\sigma}$

Then

$$
\frac{f_{\sigma \tau}}{f_{\sigma}}=\frac{\left(f_{\tau}\right)_{\sigma}}{f_{\sigma}}=\left(\frac{f_{\tau}}{f}\right)_{\sigma}=\frac{f_{\tau}}{f}
$$

because $\frac{f_{\tau}}{f}=\alpha(\tau) \in\{ \pm 1\}$ is a polynomial which is fixed by σ.
3. To see that a permutation τ switching two elements a and b and fixing the others has negative value of α it is enough to consider what happens to the sign of the factors $X_{i}-X_{j}$ distinguishing some cases. Without loss of generality one can assume that $a<b$:

- The factor $X_{a}-X_{b}$ changes sign.
- For $i<a$, the factors $X_{i}-X_{a}$ and $X_{i}-X_{b}$ are unchanged, and the same occurs to then factors $X_{a}-X_{i}$ and $X_{b}-X_{i}$ when $b<i$.
- For $a<i<b$, the factors $X_{a}-X_{i}$ and $X_{i}-X_{b}$ change all sign, but they are in an even quantity (precisely, they are $2(b-a-1$).
In total, we have an odd number of sign changes, so that $\alpha(\tau)=-1$.

