Algebra I

Solutions of exercise sheet 1

- **1.** Let (G, \cdot) be a group. We say that G is abelian if $\forall x, y \in G, x \cdot y = y \cdot x$. For $g \in G$ we define the order of g, which we denote $\operatorname{ord}_G(g)$, as the minimal positive integer n such that $g^n = 1_G$, if such n exists. Else we say that g has infinite order. Prove the following statements for a group G:
 - 1. If $e \in G$ is s.t. $\forall x \in G, e \cdot x = x$, then $e = 1_G$.
 - 2. G is abelian if and only if the inversion map $G \to G$, $x \mapsto x^{-1}$ is a group homomorphism.
 - 3. If $g^2 = 1_G$ for every $g \in G$, then G is abelian.
 - 4. If $g \in G$ has finite order, g^{-1} is a power of g.
 - 5. If G is finite, every $g \in G$ has finite order.

Solution:

- 1. Suppose that for all $x \in G$ we have $e \cdot x = x$. Applying this for $x = 1_G$ we get $e = e \cdot 1_G = 1_G$.
- 2. We have that G is abelian if and only if xy = yx for all $x, y \in G$, if and only if $xyx^{-1}y^{-1} = 1_G$ for all $x, y \in G$, if and only if $x^{-1}y^{-1} = y^{-1}x^{-1}$ for all $x, y \in G$. Being $(xy)^{-1} = y^{-1}x^{-1}$, the last statement is equivalent to saying that $x^{-1}y^{-1} = (xy)^{-1}$ for all $x, y \in G$, that is, that the inversion respects multiplication. Hence G is abelian if and only if the inversion map is a group homomorphism.
- 3. $g^2 = 1_G$ means $g = g^{-1}$, and this situation occurs for all $g \in G$ if and only if the inversion coincides with the identity, in which case it is a group homomorphism and by previous point G is abelian.
- 4. If $g \in G$ has finite order, then there exists n > 0 such that $g^n = 1_G$. Then $g^{n-1}g = 1_G$, so that $g^{n-1} = g^{-1}$ and the inverse of g is a power of g.
- 5. Let $g \in G$ and consider the map $\beta_g : \mathbb{N} \to G$ sending $n \mapsto g^n$. If G is finite, then β_g cannot be injective. Hence there exists two natural numbers m < n such that $g^m = g^n$. Multiplying by g^{-m} gives $g^{n-m} = 1$, and being n m > 0 we get that g has finite order.
- 2. We will here consider *monoids*, which are defined in the same way as groups, but without inversion map. More precisely, a *monoid* consists of a set S together with a map $\cdot : G \times G \to G$ and a distinguished element $1_S \in S$ satisfying the following axioms:

- $\forall x, y, z \in S, (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- $\forall x \in S, 1_S \cdot x = x \cdot 1_S = x$

We say that $y \in S$ is a *left* (resp., *right*) *inverse* of $x \in S$ if $y \cdot x = 1_S$ (resp., $x \cdot y = 1_S$).

Let X be a non-empty set and consider the set of functions $End(X) = \{f : X \to X\}.$

- 1. Prove that End(X), together with the composition of functions \circ , is a monoid for every set X.
- 2. Prove that $f \in \text{End}(X)$ has a left (resp., right) inverse if and only if f is injective (resp., surjective).
- 3. For which sets X does there exist $f \in End(X)$ which has a left inverse but no right inverse?

[You can use this formulation of the axiom of choice: Let $\{X_i\}_{i \in I}$ be a family of nonempty sets indexed by $I \neq \emptyset$. Then there exists a family $\{x_i\}_{i \in I}$ such that $x_i \in X_i$]

Solution:

- 1. It is easy to check associativity by assuming $f, g, h \in \text{End}(X)$ and comparing the functions $(f \circ g) \circ h$ and $f \circ (g \circ h)$ on each element $x \in X$. Both of them map indeed $x \mapsto f(g(h(x)))$. Hence they are the same function. Moreover, it is clear that composing a function f with the identity $\text{id}_X : x \mapsto x$ we get again f, so that $\text{id}_X = 1_{\text{End}(X)}$.
- 2. Suppose $f \in \text{End}(X)$ has a left inverse $g: X \to X$, i.e. $g \circ f = \text{id}_X$. Then if f(x) = f(y) for $x, y \in X$, we get x = g(f(x)) = g(f(y)) = y, proving injectivity of f. Now suppose that f has a right inverse $h: X \to X$, i.e. $f \circ h = \text{id}_X$. Then for each $x \in X$, we have that x = f(h(x)), proving surjectivity of f. So we have proved the "only if" part, and we are left to construct left and right inverses.

If $f: X \to X$ is injective, then we can can pick $x_0 \in X$ and define a function $g: X \to X$ sending $f(x) \mapsto x$ and $X \setminus f(X) \ni y \mapsto x_0$. This is a well-defined action by injectivity of f, and for all $x \in X$ we have g(f(x)) = x by definition, so that g is a left inverse of g.

If $f: X \to X$ is surjective, we can use axiom of choice (as stated in the exercise), with $I := X \neq \emptyset$ and $X_y = f^{-1}(y) \neq \emptyset$. Considering the resulting family $\{x_y\}_{y \in X}$ we can define $h: X \to X$ via $h(y) = x_y$. Then we obtain, $\forall y \in X$, $f(h(y)) = f(x_y) = y$, meaning that h is a right inverse of f.

3. The situation in which there is a function with left inverse but without any right inverse occurs precisely when X is infinite. Via the axiom of choice, one can prove that a set X is infinite if it is Dedekind infinite, that is, there exists a proper subset X' such that |X| = |X'|, say via $\phi : X \to X'$. Then ϕ can also be seen as a map $X \to X$, which by construction happens to be injective but not surjective. On the other hand, an injective map $f : X \to X$ gives a one-to-one correspondence $X \leftrightarrow \text{Im}(f)$, and if f is not surjective Im(f) is a proper subset of X, which needs to be infinite. **3.** Show that there are precisely two non-isomorphic groups of order 4, and construct their multiplication table.

Solution:

We consider a group G with 4 distinct elements 1, a, b and c. Then $a \cdot b \in G$ can only be equal to 1 or c (ab = a gives b = 1, and ab = b gives a = 1). So we can start writing down two different tables of multiplication:

	•	1	a	b	c			•	1	a	b	c
	1	1	a	b	c			1	1	a	b	c
(A)	a	a	1			and	(B)	a	a	c		
	b	b						b	b			
	c	c						c	c			

Cancellation law implies that, similarly as in a Sudoku, in a single row or column we cannot get twice the same element. Using this rule on both tables and completing them in all possible ways we obtain

	•	1	a	b	c		•	1	a	b	c			•	1	a	b	c
	1	1	a	b	c		1	1	a	b	c			1	1	a	b	С
(A_1)	a	a	1	c	b	(A_2)	a	a	1	c	b	and	(B)	a	a	c	1	b
	b	b	c	1	a		b	b	c	a	1			b	b	1	c	a
	c	c	b	a	1		c	c	b	1	a			c	c	b	a	1

But the tables (A_2) and (B) are the same up to renaming $a \mapsto c$ and $c \mapsto a$, while (A_1) is the only one where all elements have order ≤ 2 . In conclusion we have two non-isomorphic groups of order 4.

4. Consider the set $\mathbb{Z} \times \mathbb{Z}$ together with the binary operation * defined by

$$(a,h) * (b,k) = (a + (-1)^h b, h + k)$$

- 1. Show that $(\mathbb{Z} \times \mathbb{Z}, *)$ is a group and that it is not abelian.
- 2. Find all elements having finite order.
- 3. Consider the projection maps $\pi_1, \pi_2 : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by $\pi_1((m, n)) = m$ and $\pi_2((m, n)) = n$. Determine if they are morphism of groups $(\mathbb{Z} \times \mathbb{Z}, *) \to (\mathbb{Z}, +)$.

Solution:

- 1. Let us first prove that $(\mathbb{Z} \times \mathbb{Z}, *)$ is a group:
 - Associativity. It is easy to check that $((a, h) * (b, k)) * (c, l) = (a, h) * ((b, k) * (c, l)) = (a + (-1)^{h}b + (-1)^{h+k}c, h + k + l)$, for all $a, b, c, h, k, l \in \mathbb{Z}$.
 - Neutral element. Solving (e, i) * (a, h) = (a, h) (for all $a, h \in \mathbb{Z}$) gives e = i = 0. Since we have (a, h) * (0, 0) = (a, h), we get $1_G = (0, 0)$.

• Inverse element. Solving (a, h) * (b, k) = (0, 0) gives conditions k = -h and $b = -(-1)^h a$. Such condition guarantees (b, k) to be a left inverse as well:

$$(-(-1)^{h}a, -h) * (a, h) = (-(-1)^{h}a + (-1)^{-h}a, 0) = 0$$

since h and -h have the same parity.

The fact that the group is not abelian can be checked considering $(0,1) * (1,0) = (-1,1) \neq (1,1) = (1,0) * (0,1)$.

- 2. We denote any *n*-repeated multiplication by * as an *n*-th power. With an easy induction one can show that the second entry of $(a, h)^n$ is nh, which can be zero for n > 0 only if h = 0. Hence elements of finite order are of the form (a, 0). But the same easy induction gives $(a, 0)^n = (na, 0)$, which is zero for positive *n* only if a = 0. Hence 1_G is the only element of finite order.
- 3. We see that π_1 fails to be a morphism of groups:

$$\pi_1((0,1)*(1,0)) = \pi_1((-1,1)) = -1 \neq 0 + 1 = \pi_1((0,1)) + \pi_1((1,0))$$

On the other hand, π_2 is a morphism of groups $(\mathbb{Z} \times \mathbb{Z}, *) \to (\mathbb{Z}, +)$ since for all $a, b, h, k \in \mathbb{Z}$ we have the equality:

$$\pi_2((a,h)*(b,k)) = \pi_2((a+(-1)^h b,h+k)) = h+k = \pi_2((a,h)) + \pi_2((b,k))$$

- 5. (*) Fix an integer n > 1 and consider the symmetric group $S_n := \text{Sym}(\{1, \ldots, n\})$. For $p(X_1, \ldots, X_n) \in \mathbb{C}[X_1, \ldots, X_n]$ and $\sigma \in S_n$, define $p_{\sigma} = p(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$. Let $f := \prod_{1 \le i < j \le n} (X_i - X_j) \in \mathbb{C}[X_1, \ldots, X_n]$.
 - 1. Prove that for every permutation $\sigma \in S_n$, there exists a unique element $\alpha(\sigma) \in \{\pm 1\}$ such that $f_{\sigma}(X) = \alpha(\sigma)f$.
 - 2. Show that the resulting map

$$\alpha: S_n \to \{\pm 1\}$$

is a group homomorphism.

3. Let $a \neq b$ be elements of $\{1, \ldots, n\}$, and consider the permutation $\tau \in S_n$ switching a and b and fixing all the other elements. Show that $\alpha(\tau) = -1$.

Solution (sketch):

1. Since each factor of f can be found once again in f_{σ} , eventually with a changed signed, we get that f_{σ} and f are the same up to a sign. This can be formalized in several ways, e.g. defining quantities $a_{ij}(\sigma) := \operatorname{sign}(\sigma(j) - \sigma(i))$, so that

$$X_{\sigma(j)} - X_{\sigma(i)} = a_{ij}(\sigma) (X_{\max(\sigma(i),\sigma(j))} - X_{\min(\sigma(i),\sigma(j))})$$

and comparing the product formulas for f and f_{σ} .

2. We have $\alpha(\sigma) = f_{\sigma}/f$, and

$$\alpha(\sigma\tau) = \frac{f_{\sigma\tau}}{f} = \frac{f_{\sigma\tau}}{f_{\sigma}}\frac{f_{\sigma}}{f} = \frac{f_{\sigma\tau}}{f_{\sigma}}\alpha(\sigma)$$

so that we are left to prove that $f_{\sigma\tau}/f_{\sigma} = f_{\tau}/f$. To prove this, one can first show that the following equalities hold for any $p, q \in \mathbb{C}[X_1, \ldots, X_n]$:

- $p_{\sigma\tau} = (p_{\tau})_{\sigma}$
- $(pq)_{\sigma} = p_{\sigma}q_{\sigma}$

Then

$$\frac{f_{\sigma\tau}}{f_{\sigma}} = \frac{(f_{\tau})_{\sigma}}{f_{\sigma}} = \left(\frac{f_{\tau}}{f}\right)_{\sigma} = \frac{f_{\tau}}{f}$$

because $\frac{f_{\tau}}{f} = \alpha(\tau) \in \{\pm 1\}$ is a polynomial which is fixed by σ .

- 3. To see that a permutation τ switching two elements a and b and fixing the others has negative value of α it is enough to consider what happens to the sign of the factors $X_i - X_j$ distinguishing some cases. Without loss of generality one can assume that a < b:
 - The factor $X_a X_b$ changes sign.
 - For i < a, the factors $X_i X_a$ and $X_i X_b$ are unchanged, and the same occurs to then factors $X_a X_i$ and $X_b X_i$ when b < i.
 - For a < i < b, the factors $X_a X_i$ and $X_i X_b$ change all sign, but they are in an even quantity (precisely, they are 2(b a 1).

In total, we have an odd number of sign changes, so that $\alpha(\tau) = -1$.