D-MATH Prof. Emmanuel Kowalski Algebra I

Exercise sheet 2

The content of the marked exercise (*) should be known for the exam.

- **1.** For each of the following groups G and subsets $H \subseteq G$, decide if H is a subgroup of G (in that case, we write $H \leq G$).
 - 1. $G = \operatorname{SL}_2(\mathbb{R})$ and $H = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} : x \in \mathbb{R} \right\}.$
 - 2. $G = \text{Sym}(\mathbb{N})$ and $H = \{ \sigma \in G : \sigma(n) \neq n \text{ for only finitely many } n \in \mathbb{N} \}.$
 - 3. $G = \text{Sym}(\mathbb{N})$ and $H = \{ \sigma \in G : \sigma(n) = n \text{ for only finitely many } n \in \mathbb{N} \}.$
 - 4. G is any group and $H = f^{-1}(H')$, where $f : G \to G'$ is a group homomorphism and H' is a subgroup of G'.
 - 5. G = Sym(X) and H = Aut(X), for a fixed group X.
 - 6. G is any group and $H = G_{tor} := \{g \in G : \exists n \in \mathbb{N}^* : g^n = 1\}$. Prove that $H \leq G$ when G is finite or abelian, but this does not occur when $G = \text{Sym}(\mathbb{N})$.
- 2. Prove that the following maps are homomorphisms of groups. Find their kernel and image.

1. The absolute value $|\cdot|: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$, where $|x + iy| = \sqrt{x^2 + y^2}$ for $x, y \in \mathbb{R}$. 2. $f: \mathbb{R} \to \mathbb{C}^{\times}$, defined by $f(x) = e^{ix}$. 3. $g: \mathbb{R} \to \operatorname{GL}_2(\mathbb{R})$, defined by $g(t) = \begin{pmatrix} \cosh(t) & \sinh(t) \\ \sinh(t) & \cosh(t) \end{pmatrix}$.

- **3.** Let G be a group and assume that $S \subset G$ is a generating subset for G, i.e. $G = \langle S \rangle$.
 - 1. Assume that $f, g: G \to H$ are two group homomorphisms and that f(s) = g(s) for all $s \in S$. Prove: f = g.
 - 2. Assume that $\forall s, t \in S$ we have st = ts. Prove that G is abelian.
 - 3. If $s^2 = 1$ for all $s \in S$, does it follow that $x^2 = 1_G$ for all $g \in G$?

4. Consider the real *Möbius transformations*, that is, the following set of rational functions with coefficients in \mathbb{R} :

$$G = \left\{ f(X) = \frac{aX+b}{cX+d} : a, b, c, d \in \mathbb{R}, ad - bc \neq 0 \right\},\$$

together with the composition of functions \circ .

- 1. Prove that (G, \circ) is a group.
- 2. Find a subgroup H of G such that $(H, \circ) \cong (\mathbb{R}, +)$ as groups.
- 3. Consider the map

$$\alpha : \operatorname{GL}_2(\mathbb{R}) \to G$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{aX+b}{cX+d}$$

Prove that f is a group homomorphism. Determine its kernel and its image.

- 4. Determine all Möbius transformations of order 2 (they are also called *involutions*).
- 5. (*) As you have been told in class, Cayley's theorem allows us to embed every group into a symmetric group. Prove it by showing in detail that the following is a well-defined injective group homomorphism:

$$\chi: G \to \operatorname{Sym}(G)$$
$$g \mapsto \chi_g: (x \mapsto g \cdot x)$$

Due to: 2 October 2014, 3 pm.