Exercise sheet 2

The content of the marked exercise (*) should be known for the exam.

1. For each of the following groups G and subsets $H \subseteq G$, decide if H is a subgroup of G (in that case, we write $H \leq G$).
2. $G=\mathrm{SL}_{2}(\mathbb{R})$ and $H=\left\{\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right): x \in \mathbb{R}\right\}$.
3. $G=\operatorname{Sym}(\mathbb{N})$ and $H=\{\sigma \in G: \sigma(n) \neq n$ for only finitely many $n \in \mathbb{N}\}$.
4. $G=\operatorname{Sym}(\mathbb{N})$ and $H=\{\sigma \in G: \sigma(n)=n$ for only finitely many $n \in \mathbb{N}\}$.
5. G is any group and $H=f^{-1}\left(H^{\prime}\right)$, where $f: G \rightarrow G^{\prime}$ is a group homomorphism and H^{\prime} is a subgroup of G^{\prime}.
6. $G=\operatorname{Sym}(X)$ and $H=\operatorname{Aut}(X)$, for a fixed group X.
7. G is any group and $H=G_{\text {tor }}:=\left\{g \in G: \exists n \in \mathbb{N}^{*}: g^{n}=1\right\}$. Prove that $H \leq G$ when G is finite or abelian, but this does not occur when $G=\operatorname{Sym}(\mathbb{N})$.
8. Prove that the following maps are homomorphisms of groups. Find their kernel and image.
9. The absolute value $|\cdot|: \mathbb{C}^{\times} \rightarrow \mathbb{R}^{\times}$, where $|x+i y|=\sqrt{x^{2}+y^{2}}$ for $x, y \in \mathbb{R}$.
10. $f: \mathbb{R} \rightarrow \mathbb{C}^{\times}$, defined by $f(x)=e^{i x}$.
11. $g: \mathbb{R} \rightarrow \mathrm{GL}_{2}(\mathbb{R})$, defined by $g(t)=\left(\begin{array}{cc}\cosh (t) & \sinh (t) \\ \sinh (t) & \cosh (t)\end{array}\right)$.
12. Let G be a group and assume that $S \subset G$ is a generating subset for G, i.e. $G=\langle S\rangle$.
13. Assume that $f, g: G \rightarrow H$ are two group homomorphisms and that $f(s)=g(s)$ for all $s \in S$. Prove: $f=g$.
14. Assume that $\forall s, t \in S$ we have $s t=t s$. Prove that G is abelian.
15. If $s^{2}=1$ for all $s \in S$, does it follow that $x^{2}=1_{G}$ for all $g \in G$?
16. Consider the real Möbius transformations, that is, the following set of rational functions with coefficients in \mathbb{R} :

$$
G=\left\{f(X)=\frac{a X+b}{c X+d}: a, b, c, d \in \mathbb{R}, a d-b c \neq 0\right\}
$$

together with the composition of functions o .

1. Prove that (G, \circ) is a group.
2. Find a subgroup H of G such that $(H, \circ) \cong(\mathbb{R},+)$ as groups.
3. Consider the map

$$
\begin{aligned}
\alpha: \mathrm{GL}_{2}(\mathbb{R}) & \rightarrow G \\
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) & \mapsto \frac{a X+b}{c X+d}
\end{aligned}
$$

Prove that f is a group homomorphism. Determine its kernel and its image.
4. Determine all Möbius transformations of order 2 (they are also called involutions).
5. (*) As you have been told in class, Cayley's theorem allows us to embed every group into a symmetric group. Prove it by showing in detail that the following is a welldefined injective group homomorphism:

$$
\begin{aligned}
\chi: G & \rightarrow \operatorname{Sym}(G) \\
g & \mapsto \chi_{g}:(x \mapsto g \cdot x)
\end{aligned}
$$

Due to: 2 October 2014, 3 pm .

