Solutions of exercise sheet 2

The content of the marked exercise (*) should be known for the exam.

1. For each of the following groups G and subsets $H \subseteq G$, decide if H is a subgroup of G (in that case, we write $H \leq G$).
2. $G=\mathrm{SL}_{2}(\mathbb{R})$ and $H=\left\{\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right): x \in \mathbb{R}\right\}$.
3. $G=\operatorname{Sym}(\mathbb{N})$ and $H=\{\sigma \in G: \sigma(n) \neq n$ for only finitely many $n \in \mathbb{N}\}$.
4. $G=\operatorname{Sym}(\mathbb{N})$ and $H=\{\sigma \in G: \sigma(n)=n$ for only finitely many $n \in \mathbb{N}\}$.
5. G is any group and $H=f^{-1}\left(H^{\prime}\right)$, where $f: G \rightarrow G^{\prime}$ is a group homomorphism and H^{\prime} is a subgroup of G^{\prime}.
6. $G=\operatorname{Sym}(X)$ and $H=\operatorname{Aut}(X)$, for a fixed group X.
7. G is any group and $H=G_{\text {tor }}:=\left\{g \in G: \exists n \in \mathbb{N}^{*}: g^{n}=1\right\}$. Prove that $H \leq G$ when G is finite or abelian, but this does not occur when $G=\operatorname{Sym}(\mathbb{N})$.

Solution:

1. Yes. G is the multiplicative group consisting of 2×2 matrices with coefficient in \mathbb{R} having determinant 1 , so that $H \subseteq G$. Clearly the identity matrix lies in H. For each $x, y \in \mathbb{R}$, we have

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
1 & x+y \\
0 & 1
\end{array}\right)
$$

so that H is closed under multiplication and contains for all $x \in \mathbb{R}$ the inverse $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{rr}1 & -x \\ 0 & 1\end{array}\right)$. Hence $H \leq G$.
2. Yes. By definition $1 \in H$. For each $\sigma \in \operatorname{Sym}(\mathbb{N})$ let us denote $I_{\sigma}:=\{n \in \mathbb{N}$: $\sigma(n) \neq n\}$. This means that $\sigma \in H$ if and only if $\left|I_{\sigma}\right|<\infty$. Then for all $\sigma \in S_{n}$ we have $I_{\sigma^{-1}}=I_{\sigma}$ since $\sigma^{-1}(x) \neq x$ if and only if $x \neq \sigma(x)$, implying that for $\sigma \in H$ one has $\sigma^{-1} \in H$.
As concerns multiplication, let $\sigma, \tau \in H$. We have that if $n \in\left(\mathbb{N} \backslash I_{\sigma}\right) \cap\left(\mathbb{N} \backslash I_{\tau}\right)=$ $\mathbb{N} \backslash\left(I_{\sigma} \cup I_{\tau}\right)$, then n is fixed by σ and τ, and of course it is fixed by $\sigma \tau$, namely, $n \in \mathbb{N} \backslash I_{\sigma \tau}$. Hence $\mathbb{N} \backslash\left(I_{\sigma} \cup I_{\tau}\right) \subseteq \mathbb{N} \backslash I_{\sigma \tau}$ implying that $I_{\sigma} \cup I_{\tau} \supseteq I_{\sigma \tau}$. Then $I_{\sigma \tau}$ happens to be finite, so that $\sigma \tau \in H$.
3. No, because $1_{G}=\operatorname{id}_{\mathbb{N}} \notin H$.
4. Yes. This is immediately proved by saying that for $x, y \in H$ one has $f\left(1_{G}\right)=1_{G^{\prime}}$, $f(x y)=f(x) f(y)$ and $f\left(x^{-1}\right)=f(x)^{-1}$, and those three elements lie all in H^{\prime} precisely because H^{\prime} is a subgroup of G^{\prime}. Then $1_{G}, x y$ and x^{-1} lie all in $H=$ $f^{-1}\left(H^{\prime}\right)$.
5. Yes. First, notice that id_{X} is a group automorphism of X. Composition of automorphisms is an automorphism: for all $x, y \in X$ and $f, g \in \operatorname{Aut}(X)$ we have $(f \circ g)(x \cdot y)=f(g(x) \cdot g(y))=(f \circ g)(x) \cdot(f \circ g)(y))$. Finally, for $g=$ $f^{-1} \in \operatorname{Aut}(X)$ we have $f(g(x) g(y))=f(g(x)) f(g(y))=x y$, so that by bijectivity $g(x y)=g(x) g(y)$ and g is an automorphism of groups.
6. If G is finite, $G_{\text {tor }}=G$ by Exercise 1.5 from last exercise sheet, and of course it is a subgroup of G.
If G is abelian, for all $x, y \in G_{\text {tor }}$ we have positive integer m, n such that $g^{m}=$ $h^{n}=1_{G}$. Then applying induction and using commutativity we get $(g h)^{m n}=$ $g^{m n} h^{m n}=\left(g^{m}\right)^{n}\left(h^{n}\right)^{m}=1_{G}$, so that $g h \in G_{\text {tor }}$. Clearly $1_{G} \in G_{t o r}$. If $g^{n}=1$ for $g \in G$ and $n>0$, then applying induction we get $\left(g^{-1}\right)^{n}=\left(g^{n}\right)^{-1}=1_{G}^{-1}=1_{G}$. Hence $G_{\text {tor }} \leq G$ when G is abelian.
If $G=\operatorname{Sym}(\mathbb{N})$, then $G_{\text {tor }}$ is not a subgroup. We assume here that $0 \in \mathbb{N}$. For example, consider the permutation $\sigma, \tau \in \operatorname{Sym}(\mathbb{N})$ defined by

$$
\sigma(k)=\left\{\begin{array}{ll}
k+1 & \text { for } k \text { even } \\
k-1 & \text { for } k \text { odd }
\end{array} \quad \tau(k)= \begin{cases}0 & \text { for } k=0 \\
k+1 & \text { for } k \text { odd } \\
k-1 & \text { for } k>0 \text { even }\end{cases}\right.
$$

Then it can be easily checked that $\sigma^{2}=\tau^{2}=\operatorname{id}_{\mathbb{N}}$, so that $\sigma, \tau \in G_{\text {tor }}$. On the other hand, for k an even natural number, we have $(\sigma \tau)(k)=\sigma(k+1)=k+2$, which is again even, so that an easy induction gives $(\sigma \tau)^{n}(k)=k+2 n$ for every $n>0$, which is never equal to k, so that $(\sigma \tau)^{n} \neq \mathrm{id}_{\mathbb{N}}$ for every positive integer n, and $\sigma \tau \notin G_{\text {tor }}$.
2. Prove that the following maps are homomorphisms of groups. Find their kernel and image.

1. The absolute value $|\cdot|: \mathbb{C}^{\times} \rightarrow \mathbb{R}^{\times}$, where $|x+i y|=\sqrt{x^{2}+y^{2}}$ for $x, y \in \mathbb{R}$.
2. $f: \mathbb{R} \rightarrow \mathbb{C}^{\times}$, defined by $f(x)=e^{i x}$.
3. $g: \mathbb{R} \rightarrow \mathrm{GL}_{2}(\mathbb{R})$, defined by $g(t)=\left(\begin{array}{cc}\cosh (t) & \sinh (t) \\ \sinh (t) & \cosh (t)\end{array}\right)$.

Solution:

1. Given two complex numbers $z=a+i b$ and $w=c+i d$, we have

$$
\begin{aligned}
|z w| & =|(a c-b d)+i(a d+b c)|=\sqrt{(a c-b d)^{2}+(a d+b c)^{2}} \\
& =\sqrt{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}=\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}=|z| \cdot|w|
\end{aligned}
$$

so that the absolute value is a homomorphism of groups. Let us know compute kernel and image of the absolute value.

$$
\operatorname{ker}(|\cdot|)=\{z \in \mathbb{C}:|z|=1\}
$$

It is the unit circle in the complex plane, which can also be written down as $\left\{x+i y \in \mathbb{C}: x^{2}+y^{2}=1\right\}$. As concerns the image, we claim that $\operatorname{Im}(f)=R^{+}$. For $r \in R^{+}$we have $|r|=\sqrt{r^{2}}=r$, so that $R^{+} \subseteq \operatorname{Im}(f)$. By definition $\operatorname{Im}(f) \subseteq R_{\geq 0}$ and since the only solution of the 2 -variable equation $\sqrt{a^{2}+b^{2}}=0$ is $a=b=0$, we have that $\operatorname{Im}(f) \subseteq R^{+}$.
2. $e^{i(x+y)}=e^{i x} e^{i y}$ as property of the complex exponential, so that f is a group homomorphism. We have that $e^{i x}=\cos (x)+i \sin (x)$ is 1 if and only if $x \in$ $2 \pi \mathbb{Z}$, so that $\operatorname{ker}(f)=2 \pi \mathbb{Z}$. As concerns the image, notice that $e^{i x}=\cos (x)+$ $i \sin (x), x \in \mathbb{R}$ is a parametrization of the unit circle of the complex plane: $\left|e^{i x}\right|=$ $\sqrt{\cos (x)^{2}+\sin (x)^{2}}=1$ for every x, and for each couple of real numbers $(a, b) \in \mathbb{R}^{2}$ s.t. $a^{2}+b^{2}=1$ there exists a real number x such that $\cos (x)=a$ and $\sin (x)=b$.
3. Considering the entries of a matrix $g(s) g(t)$ for real s and t, we need to compute

$$
\begin{aligned}
\cosh (s) \cosh (t) & +\sinh (s) \sinh (t)=\frac{\left(e^{s}+e^{-s}\right)\left(e^{t}+e^{-t}\right)}{4}+\frac{\left(e^{s}-e^{-s}\right)\left(e^{t}-e^{-t}\right)}{4}= \\
& =\frac{e^{s+t}+e^{-s-t}}{2}=\cosh (s+t)
\end{aligned}
$$

and

$$
\begin{aligned}
\cosh (s) \sinh (t) & +\sinh (s) \cosh (t)=\frac{\left(e^{s}+e^{-s}\right)\left(e^{t}-e^{-t}\right)}{4}+\frac{\left(e^{s}-e^{-s}\right)\left(e^{t}+e^{-t}\right)}{4}= \\
& =\frac{e^{s+t}-e^{-s-t}}{2}=\sinh (s+t)
\end{aligned}
$$

so that

$$
\begin{aligned}
g(s) g(t) & =\left(\begin{array}{cc}
\cosh (s) & \sinh (s) \\
\sinh (s) & \cosh (s)
\end{array}\right)\left(\begin{array}{cc}
\cosh (t) & \sinh (t) \\
\sinh (t) & \cosh (t)
\end{array}\right)= \\
& =\left(\begin{array}{cc}
\cosh (s+t) & \sinh (s+t) \\
\sinh (s+t) & \cosh (s+t)
\end{array}\right)=g(s+t)
\end{aligned}
$$

and g is a group homomorphism.
Now let us compute the kernel of g. We have

$$
\operatorname{ker}(g)=\{s \in \mathbb{R}: \cosh (s)=1, \sinh (s)=0\}=\{0\}
$$

because $\sinh (s)=0$ is equivalent to $e^{x}=e^{-x}$, i.e. $x=0$ (being $x \in \mathbb{R}$). Hence the map g is injective, and $\mathbb{R} \cong \operatorname{Im}(g)$. It can be easily shown that

$$
\operatorname{Im}(g)=\left\{\left(\begin{array}{ll}
x & y \\
y & x
\end{array}\right): x^{2}-y^{2}=1, x>0\right\} \leq\left\{A \in S L_{2}(\mathbb{R}) \mid A^{T}=A\right\}
$$

3. Let G be a group and assume that $S \subset G$ is a generating subset for G, i.e. $G=\langle S\rangle$.
4. Assume that $f, g: G \rightarrow H$ are two group homomorphisms and that $f(s)=g(s)$ for all $s \in S$. Prove: $f=g$.
5. Assume that $\forall s, t \in S$ we have $s t=t s$. Prove that G is abelian.
6. If $s^{2}=1$ for all $s \in S$, does it follow that $x^{2}=1_{G}$ for all $g \in G$?

Solution: NB. The subgroup $\langle S\rangle \leq G$ generated by S can be equivalently defined as the subset $H=\left\{s_{1} \cdots s_{m} \in G: \forall i \in I, s_{i} \in S\right.$ or $\left.s_{i}^{-1} \in S\right\}$ or as the intersection $K=\bigcap_{S \subseteq L \leq G} L$. The two definitions coincide. Indeed, both H and K are easily shown to be suburoups. S is a subset of H by definition, so that by construction $K \leq H$, since H need to appear as one of the L 's in the intersection defining K. But $S \subseteq K$ by definition, and being K closed under multiplication and taking inverses, it has to contain all the elements in H, giving $H \leq K$. Hence $H=K$.

1. Let $x \in G$. Being G generated by S, there are some elements $s_{1}, \ldots, s_{m} \in S$ and signs $\varepsilon_{1}, \ldots, \varepsilon \in\{ \pm 1\}$ such that $x=s_{1}^{\varepsilon_{1}} \cdots s_{n}^{\varepsilon_{n}}$. Then comparing $f(x)=g(x)$, by writing down x as the product above and using that f and g respect products and taking inverses. Being x arbitrary, we have $f=g$.
2. We can use an argument which is very similar to the one in the previous point. Writing down arbitrary x and y as products of elements in S and inverses of elements in S, commuting x and y becomes possible after proving that also couples of elements $\left(s, t^{-1}\right)$ and $\left(s^{-1}, t^{-1}\right)$, where $s, t \in S$, do commute. For couples of elements $\left(s, t^{-1}\right)$ we have $t\left(s t^{-1}\right)=(t s) t^{-1}=s t t^{-1}=s$, and this equality gives $t^{-1} s=s t^{-1}$. For couples of elements $\left(s^{-1}, t^{-1}\right)$ we have $s^{-1} t^{-1}=(t s)^{-1}=$ $(s t)^{-1}=t^{-1} s^{-1}$. This completes the proof.
3. The answer is negative. You can consider $G=\langle\sigma, \tau\rangle \leq \operatorname{Sym}(\mathbb{N})$, with σ and τ defined as in the Solution of Exercise 6.1 of this Exercise sheet. Clearly, $\sigma^{2}=$ $\tau^{2}=1_{G} \neq(\sigma \tau)^{2}$.
4. Consider the real Möbius transformations, that is, the following set of rational functions with coefficients in \mathbb{R} :

$$
G=\left\{f(X)=\frac{a X+b}{c X+d}: a, b, c, d \in \mathbb{R}, a d-b c \neq 0\right\}
$$

together with the composition of functions 0 .

1. Prove that (G, \circ) is a group.
2. Find a subgroup H of G such that $(H, \circ) \cong(\mathbb{R},+)$ as groups.
3. Consider the map

$$
\begin{aligned}
\alpha: \mathrm{GL}_{2}(\mathbb{R}) & \rightarrow G \\
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) & \mapsto \frac{a X+b}{c X+d}
\end{aligned}
$$

Prove that α is a group homomorphism. Determine its kernel and its image.
4. Determine all Möbius transformations of order 1 and 2 (they are also called involutions).

1. First, we need to show that the composition of two Möbius functions is still a Möbius function. For $i=1,2$, let $f_{i}=\left(a_{i} X+b_{i}\right) /\left(c_{i} X+d_{i}\right)$, with $a_{i} d_{i}-b_{i} c_{i} \neq 0$. Then

$$
f_{1} \circ f_{2}=\frac{a_{1} \frac{a_{2} X+b_{2}}{c_{2} X+d_{2}}+b_{1}}{c_{1} \frac{a_{2} X+b_{2}}{c_{2} X+d_{2}}+d_{1}}=\frac{\left(a_{1} a_{2}+b_{1} c_{2}\right) X+\left(a_{1} b_{2}+b_{1} d_{2}\right)}{\left(c_{1} a_{2}+d_{1} c_{2}\right) X+\left(c_{1} b_{2}+d_{1} d_{2}\right)}
$$

as point (3) suggests, the four coefficients of $f_{1} \circ f_{2}$ are precisely the ones of the matrix $A_{1} \cdot A_{2}$, where $A_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right)$. Then applying Binet's theorem about determinants we have $\operatorname{det}\left(A_{1} A_{2}\right)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right) \neq 0$ so that the coefficients we wrote for $f_{1} \circ f_{2}$ satisfy the inequality $a d-b c \neq 0$. Associativity of composition can then be inferred by associativity of matrix product, and the neutral element of G is $\operatorname{id}_{\mathbb{R}}=X$, obtained for $a=d=1$ and $b=c=0$. The inverse of the transformation f_{1} exists and can be defined as $f_{1}^{-1}=\frac{d X-b}{-c X+a}$.
2. It is enought to consider the subgroup of functions of the form $f=X+r, r \in R$. Composing two such functions we are just summing the two correspondent real numbers. [This subgroup is actually the image of the subgroup in Exercise 1.1 via the morphism in the next point]
3. We have already proved that α is a morphism in Point 1 .

$$
\begin{aligned}
\operatorname{ker}(\alpha) & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R}) \right\rvert\, \frac{a X+b}{c X+d}=X\right\} \\
& =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a=d \neq 0, b=c=0\right\}
\end{aligned}
$$

It is the group of invertible diagonal matrices, which is isomorphic to R^{\times}. The map α is surjective by definition, since four coefficients defining a Möbius function can be always be put in a 2×2 matrix so that it is invertible.
4. We look for transformations satisfying $f^{2}=\operatorname{id}_{\mathbb{R}}$. i.e. $f=f^{-1}$. Considering a Möbius transformation of the form $f=(a X+b) /(c X+d)$ we get

$$
\begin{aligned}
& \frac{a X+b}{c X+d}=\frac{d X-b}{-c X+a} \Leftrightarrow(a X+b)(-c X+a)=(c X+d)(d X-b) \\
& \Leftrightarrow c(a+d) X^{2}+\left(a^{2}-d^{2}\right) X+b(a+d)=0 \Leftrightarrow\left(a=-d \text { or }\left\{\begin{array}{l}
c=b=0 \\
a=d
\end{array}\right)\right.
\end{aligned}
$$

and we have three possibilities:

- $a=d=0$. The we get a Möbius function of the form $f=b /(c X)$, where $b \neq 0 \neq c$ (so that $a d-b c 1 \neq 0$). Such an involution can just be written as $f=k / X$, for $k \in \mathbb{R}^{\times}$.
- $a=-d \neq 0$. We get an involution of the form $f=(a X+b) /(c X-a)$, and being $a \neq 0$ we can divide by a and write $f=(X+\lambda) /(\mu X-1)$, for $\lambda, \mu \in \mathbb{R}$ such that $\lambda \mu \neq 1$.
- $a=d \neq 0$. Then we need $b=c=0$, and we get the identity $f=X$.

In conclusion, all the non-trivial involution are

$$
f=\frac{k}{X}, k \neq 0 \text { and } f=\frac{X+\lambda}{\mu X-1}, \lambda \mu \neq 1
$$

5. (*) As you have been told in class, Cayley's theorem allows us to embed every group into a symmetric group. Prove it by showing in detail that the following is a welldefined injective group homomorphism:

$$
\begin{aligned}
\chi: G & \rightarrow \operatorname{Sym}(G) \\
g & \mapsto \chi_{g}:(x \mapsto g \cdot x)
\end{aligned}
$$

Solution (sketch):

There are three things which need to be proven:

1. χ is a map, i.e. $\chi_{g} \in \operatorname{Sym}(G)$. One has to prove that the association $x \mapsto g \cdot x$ is a bijection.
2. χ is a group homomorphism, i.e. $\chi_{g h}=\chi_{g} \circ \chi_{h}$. This can be tested on elements $x \in G$.
3. χ is injective (easily done by comparing χ_{g} and $\chi_{g^{\prime}}$ on 1_{G}).

Instead of proving directly that χ_{g} is bijective, one can first prove the equality in the second step (considering χ_{g} as a non-necessarily bijective map $G \rightarrow G$). Then $\chi_{g^{-1}}$ is an inverse of χ_{g} for all $g \in G$, so that those maps are all bijective.

